#### **Overview of MOM6**

#### From the MOM6 team



CESM winter workshop, Ocean Model Working Group, Boulder, CO Feb 28, 2017

## MOM6 dynamical core

- Finite volume solver
  - Hydrostatic Boussinesq or non-Boussinesq equations
- Arakawa C-grid in horizontal
   Allows single-point channels
- Arbitrary-Lagrangian-Eulerian
  - General coordinate
  - No vertical CFL limit
    - $\rightarrow$ ultrafine vertical resolution
  - Sub-cycled gravity waves
  - Wetting and drying is built-in

• Range of transport schemes (new)





#### MOM6 sub-grid scale parameterizations

- Planetary boundary layer
  - KPP (via CVmix) (Large et al., 1994)
  - ePBL (Hallberg & Reichl, 2017)
  - Bulk mixed layer
- Mixed layer re-stratification by submesoscale eddies
  - Fox-Kemper et al., 2008
- Shear dependent mixing
  - Jackson et al., 2008
  - CVmix (LMD94)

- Sub-grid mesoscale eddies
  - Gent & McWilliams, 1990 / TEM
    - Various prescriptions for diffusivity
    - Ferrari et al., 2010
  - Stirring (aka Redi tensor)
    - Monotonic scheme
- BBL (LOTW)
- Geothermal
- SW penetration (ocean color)
- Internal tide-driven mixing

#### Physically-based, energetically-consistent parameterizations of diapycnal mixing

- NOAA/NSF Internal Wave-Driven Mixing Climate Process Team;
- Parameterizations of sub-grid-scale mixing which allow mixing to vary spatially and evolve in a changing climate.



CESM winter workshop, Boulder, CO Feb 28, 2017



# Ocean component of CM4 (OM4) design

Objectives:

- Build a ¼° ocean model with fidelity of CM2.6 (0.1°)
- Can we build models that are "configured" the same way at all resolutions?
  - scale aware parameterizations

Starting point:

- From scratch
- Every parameterization re-written to work in general coordinates

- Notionally ¼° horizontal resolution
  - Also building 1° and ½° for ESMs and other MIPs
  - <sup>1</sup>/<sub>8</sub>° already developed for global coupled ocean-ice-shelf
- What finer resolution might get us
  - Resolve boundary currents 1/2-1/3°?
  - Meanders (standing eddies) <sup>1</sup>/<sub>4</sub>°?
  - Resolve upwelling zones ½°?
  - Overflows  $\frac{1}{x}^{\circ}$  + vertical coord.?
  - Mesoscale eddies  $1/_{20}$ ?



#### Ocean component of CM4 (OM4)



CESM winter workshop, Boulder, CO Feb 28, 2017



### Role of vertical coordinate (1/4° ocean in CM4)

- Changing vertical coordinate alone
  - $-z^*$  to hybrid  $z^*/\rho_2$  (aka HYCOM)
  - Identical parameterization/atmos
  - Reduced heat uptake by 0.27 Wm<sup>-2</sup>

40



Chassignet et al., 2003; Megann et al., 2010; Ilicak et al., 2012

200

400

600

800

1000

2000

3000

4000 5000

6000

Ζ\*

20

Depth (m)



#### When to parameterize sub-grid mesoscale eddies

- Even "fine-resolution" ocean models cannot resolve first-mode eddies everywhere
- Adding a global eddy parameterization dampens resolvable eddies



Mercator resolution that resolves deformation radius



- Resolution-aware eddy parameterization
  - Allows baroclinic instability to proceed when resolution is sufficient
  - Parameterizes eddy fluxes otherwise

Hallberg, 2013

#### Accounting for sub-grid mesoscale EKE

- Mesoscale EKE equation
  - Eden and Greatbatch, 2008
  - Depth integrated (Jansen et al., 2015)



- $\gamma$  = bottom EKE / barotropic EKE
- L<sub>e</sub> is combination of length scales e.g. Held-Larichev (1996), Rhines

Thickness diffusivity resulting from MEKE (m<sup>2</sup>s<sup>-1</sup>)



# Energizing the "resolved" eddies

- Backscatter improves some features
  - Sometimes better than  $\sqrt[45]{10}$  our  $\sqrt[1]{10}$  model
- There are other aspects that are "not right"
  - e.g. Aleutian eddies appear but have wrong sign
- We do not understand these results yet
  - ... but are working on it





#### **Iceshelf** cavities

- Ice shelf cavities simulated with evolving iceshelf model coupled to ocean
  - Moving upper boundary
  - Moving grounding line ·
- Note ocean squashed between shell and bottom
- Preparing <sup>1</sup>/<sub>8</sub>° coupled ocean-ice-she global simulations

Gustavo Marques



#### In the pipeline: porous barrier representation

- Use PDF of topography along edges (and within column)
- Real-world "actual" values:
  - areas/volumes
  - sill-depths/ridge-heights



e.g. Indonesian Through Flow



## Open development

- Open development
  - Not just open source + releases
  - All activity visible via GitHub
    - Anyone can contribute at anytime
- Version control using "git"
  - Fully distributed
  - Powerful
    - Not file-by-file (CVS) but as whole
    - In particular, use sub-modules
- Everything is under version control
  - code, inputs, tools, tests, pp, …



#### Documentation

- Getting started (aka installing and running)
  - User-driven wiki
  - Google "MOM6 wiki"

Welcome to **MOM6** - a next-generation open-source ocean model that combines the best of GOLD (http://code.google.com/p/gold-omod/) and MOM5 (http://mom-ocean.org). This wiki describes the installation and setup of MOM6 and the accompanying sea ice model, SIS2. It also outlines how you can contribute to help build better ocean and sea ice models.

#### **Quick navigation**



• User guide and API reference

| 🖨 MOM6<br>latest        | Docs » Welcome to MOM6's documentation!                       | O Edit on GitHub |
|-------------------------|---------------------------------------------------------------|------------------|
| earch docs              |                                                               |                  |
| bout this documentation | Welcome to MOM6's docu                                        | mentation!       |
| quations                | Contents:                                                     |                  |
| arameterizations        |                                                               |                  |
| Vorking with MOM6       | <ul> <li>About this documentation</li> </ul>                  |                  |
| utorial                 | <ul> <li>Equations</li> <li>Notation for equations</li> </ul> |                  |
| PI Reference            | Governing equations                                           |                  |
|                         | Work                                                          | in progress      |

#### • Tutorials (mostly analysis)

| Branch: dev/n | aster  MOM6-examples / ocean_only / flow_downslope / Flow down slope.ipynb                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Find file                                              | Copy path        |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------|
| adcroft R     | epalced PNG in flow_downslope with jupyter notebook                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8c75f34 on N                                           | May 1, 2016      |
| 1 contributor |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |                  |
| 139 lines (3  | 38 sloc) 82.7 KB Raw Blame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | History                                                | 1 🗊              |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |                  |
|               | This is a quick illustration of the output from the four "flow_downslope" experiments which simulate a dense plug<br>down off a raised shelf in an ambiently stratified ocean. The four experiments use different vertical coordianes: a)<br>stacked shallow water, b) Continuous isopycnal coordinates using the ALE-method, c) Terrain-following sigma-coord<br>ALE-method, and d) Geopotential z*-coordinates using the ALE method.                                                                                                            | g of water flowi<br>) Layer model,<br>rdinates using t | ing<br>or<br>the |
| In [1]:       | This is a quick illustration of the output from the four "flow_downslope" experiments which simulate a dense plug<br>down off a raised shelf in an ambiently stratified ocean. The four experiments use different vertical coordianes: a)<br>stacked shallow water, b) Continuous isopycnal coordinates using the ALE-method, c) Terrain-following sigma-coor<br>ALE-method, and d) Geopotential z*-coordinates using the ALE method.                                                                                                             | g of water flowi<br>) Layer model,<br>rdinates using f | ing<br>or<br>the |
| In [1]:       | This is a quick illustration of the output from the four "flow_downslope" experiments which simulate a dense plug<br>down off a raised shelf in an ambiently stratified ocean. The four experiments use different vertical coordianes: a<br>stacked shallow water, b) Continuous isopycnal coordinates using the ALE-method, c) Terrain-following sigma-coor<br>ALE-method, and d) Geopotential z*-coordinates using the ALE method.<br>%pylab inline<br>import scipy.io.netcdf<br>Populating the interactive namespace from numpy and matplotlib | g of water flowi<br>) Layer model,<br>rdinates using f | or<br>the        |