I nvestigating Southern Ocean Mixed Layer Biases

Alice K. DuVivier - duvivier@ucar.edu

Bill Large, Gokhan Danabasoglu, Ned Patton, Peter Sullivan, Mike Levy

CCSM has shallow mixed layer bias over the Southern Ocean in winter months (JAS).

Figure from Danabasoglu et al.

How does ocean model resolution impact the mixed layer bias and for what reasons?

- Figure courtesy of Matt Long. Simulations use CORE standard year.

First Southern Ocean measurements of annual cycle air-sea fluxes available at SOFS in 2010.

* Schultz et al. 2012, First air-sea flux mooring measurements in the Southern Ocean, GRL.

Argo floats reveal seasonal deepening of ocean mixed layer.

ARGO float profiles near SOFS (-46.635S,141.96E)

| | 2010-3-24_19 | $\mid 2010-4-28 _17$ |
| :--- | :--- | :--- |$| 2010-5-18 _9 \quad$ 2010-9-14_10

Gridded Argo observations show deepest winter mixed layers in Pacific in Indian sectors.

Argo mixed layer depth: 2010

1° model shows (expected) shallow MLD bias in 2010.

g40.100_SOcn-Argo mixed layer depth: 2010

1° model shows (expected) shallow MLD bias in 2010.

g40.100_SOcn-Argo mixed layer depth: 2010

In September, 1° and 0.1° models have opposite biases.

Argo, g40.100_SOcn, and g.e01_SOcn: 09 2004-2009 avg with transects

In Pacific sector, the signs and locations of the bias are consistent in time for 1° and 0.1° models.

New Zealand
Chile

In Indian sector, the signs and locations of the bias are consistent in time for 1° and 0.1° models.

At SOFS, MLD biases consistent over time though near surface density gradients are similar.

Tracking down the MLD bias origin

1. Missing ocean physics (waves)
2. Initial ocean state and transport
3. Atmospheric Forcing
4. Combination of factors

Tracking down the MLD bias origin

1. Missing ocean physics (waves)
2. Initial ocean state and transport
3. Atmospheric Forcing
4. Combination of factors

Use 4 LES simulations:
-April and June SOFS forcing over variety of surface buoyancy fluxes -With and without waves (stokes)
\rightarrow These simulations provide guidance to how to incorporate missing wave physics into KPP mixing.

Surface forcing for LES cases.

April

Surface Buoyancy Flux (- = OCN loss)

$L a^{2}=\frac{u^{*}}{u_{\text {stokes }}}$
Small La \rightarrow Big waves

June

Surface Buoyancy Flux (- = OCN loss)

April: turbulent buoyancy flux without stokes effects.

*Note: 1D model uses current KPP implementation (no waves or nonlocal momentum terms)

April: turbulent momentum fluxes without stokes effects.

<w'u'> from LES

VTUF from 1D (LES_april_ctrl)

Hours since beginning of run
$<w^{\prime} v^{\prime}>$ from LES

VTVF from 1D (LES_april_ctrl)

$\mathrm{cm}^{\wedge} 2 / \mathrm{s}^{\wedge} 2$

*No waves or nonlocal momentum

KPP: Path forward

$\left\langle w^{\prime} x^{\prime}\right\rangle=-\overbrace{\mathrm{K}_{X} \partial_{z} X}^{\text {Local (down-gradient) }}+\overbrace{\mathrm{K}_{X}^{\prime} \gamma_{C O N} \hat{e}_{C O N}+\underbrace{\text { K }}{ }_{X}^{\prime \prime} \gamma_{S T K} \hat{e}_{S T K}}^{\text {Nonlocal (counter-gradient) }}$
$\mathrm{K}_{X}=w_{x} h G(\sigma)$
$\mathrm{K}_{X} \stackrel{?}{=} \mathrm{K}_{X}^{\prime} \stackrel{?}{=} \mathrm{K}_{X}^{\prime \prime}$
For scalars $: \hat{e}=1$

For momentum : $\gamma_{\text {CON }} \neq 0 ; \gamma_{\text {STK }} \neq 0 ; \hat{e}_{\text {CON }} \neq \hat{e}_{\text {STK }}$

KPP: range of cases allows us to attack each term.

Local (down-gradient) Nonlocal (counter-gradient)

April	April	April	April	June	June
no stokes	stokes	no stokes	stokes	no stokes	stokes
Sfc. Buoy. forcing: stable	Sfc. Buoy. forcing: stable	Sfc. Buoy. forcing: unstable	All forcing	All forcing	All forcing
K_{X}	$\mathrm{~K}_{X}^{\prime \prime} \gamma_{S T K} \hat{e}_{S T K}$	$\mathrm{~K}_{X}^{\prime} \gamma_{C O N} \hat{e}_{C O N}$	$\mathrm{~K}_{X}^{\prime} \gamma_{C O N} \hat{e}_{\text {CON }}+$	Verify	Verify
$\mathrm{K}_{X}^{\prime} \gamma_{S T K} \hat{e}_{S T K}$					

KPP: range of cases allows us to attack each term.

Local (down-gradient) Nonlocal (counter-gradient)

April	April	April	April	June	June
no stokes	stokes	no stokes	stokes	no stokes	stokes
Sfc. Buoy. forcing: stable	Sfc. Buoy. forcing: stable	Sfc. Buoy. forcing: unstable	All forcing	All forcing	All forcing
K_{X}	$\mathrm{~K}_{X}^{\prime \prime} \gamma_{S T K} \hat{e}_{S T K}$	$\mathrm{~K}_{X}^{\prime} \gamma_{C O N} \hat{e}_{C O N}$	$\mathrm{~K}_{X}^{\prime} \gamma_{C O N} \hat{e}_{\text {CON }}+$	Verify	Verify
$\mathrm{K}_{X}^{\prime \prime} \gamma_{S T K} \hat{e}_{S T K}$					

First order of business: Use April LES to guide treatment of reference depth(h) and turbulent velocity $\left(w_{x}\right)$ scale.

hinv	$:$ LES inversion depth $\left[\max \mathrm{d}_{\mathrm{z}} \mathrm{B}\right]$
hLES	$:$ LES turbulence depth $\left.\left[<\mathrm{w}^{\prime 2}\right\rangle\right]$
hRi	$:$ Critical Richardson \# depth $[\mathrm{Ri}>0.3]$
hMO	$:$ Monin-Obukhov length $\left[u^{* 3} /\left(\mathrm{K}^{*} \mathrm{~B}_{\mathrm{sfc}}\right)\right]$
hEk	$:$ Ekman depth $\left[0.5 u^{*} / \mathrm{f}\right]$
hKPP	$:$ Combo of Ri,MO,Ek methods

Southern Ocean Mixed Layers

1° and 0.1° models have similar biases at start (May) of SH winter.

Argo, g40.100_SOcn, and g.e01_SOcn: 05 2004-2009 avg with transects

By July, 1° and 0.1° models have opposite biases.

Argo, g40.100_SOcn, and g.e01_SOcn: 07 2004-2009 avg with transects

In Pacific and Indian sectors, near surface stability differs for 1° and 0.1° models.

Pacific sector transect of Argo, g40.100_SOcn, and g.e01_SOcn rho: 09 2004-2009 avg

Indian sector transect of Argo, g40.100_SOcn, and g.e01_SOcn rho: 09 2004-2009 avg

Upper ocean stability differs for 1° and 0.1° models.

Leg const lon(135.5) sector transect of Argo, g40.100_SOcn, and g.e01_SOcn rho: 09 2004-2009 avg

Southern Ocean Mixed Layers

Timeseries (2004-2011) of potential density at -57.5Lat_270.5Lon

J une: turbulent buoyancy fluxes without stokes effects.

*Note: 1D model uses current KPP implementation (no waves or nonlocal momentum terms)

| | | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -0.006 | -0.004 | $\mathrm{degC} \mathrm{cm} / \mathrm{s}$ | | | | | | | |

June: turbulent momentum fluxes without stokes effects.

LES vs. 1D Vertical turbulent flux of U momentum - june and stokes off
<w'u'> from LES

c																						

LES vs. 1D Vertical turbulent flux of V momentum - june and stokes off <w'v'> from LES

*No waves or nonlocal momentum term

Southern Ocean Mixed Layers

Southern Ocean Mixed Layers

Weijer et al. 2012 - Figure 8. Southern Ocean Climate in CCSM4

OUTLINE: Southern Ocean Mixed Layers

- Profiles from Argo floats showing progression in 2010. No "MLD" feature obvious.
- Discuss briefly the depth metrics: MLD, BLD, etc. and how these work
- Compare Argo gridded and g40 and g.e01. Discuss biases, seasonal progression, resolution. Show spatial plots, cross sections, and timeseries at a point.
- 1D modeling: March/Sept (??) Point is to show bias in MLD and importance of initial conditions on the result. (Have sims w/ g40, g.e01, etc. as initial condition, but start with comparison of model result initialized with argo float)
- LES vs.1D:
- Location, not biased in space or time based on argo/model comparisons
- Timeseries of forcing (wind, waves, buoyancy) for april and june
- Compare w and w/o stokes??
- ** Bill has figure of buoyancy, buoyancy+wind, buoyancy+wind+waves**
- Initial turbulent flux comparisons w/o stokes: VTTF, VTUF, VTVF
- Talk about the path forward with KPP (generally)
- Scaling with stokes (including alignment of wind and waves)
- Nonlocal terms: momentum and scalars, wind and waves
Don't talk about Salinity feature and future work on this...

