Oxygen-dependent zooplankton grazing in CESM-BGC

Jessica Luo

Matthew Long Keith Lindsay Mike Levy

CESM WG Meeting Mar 1, 2017

Expansions of oxygen minimum zones under climate change

Stramma et al. 2010

Expansions of oxygen minimum zones under climate change

CESM Large Ensemble 21th century transient integrations

[O₂] change between 1981-2000 & 2081-2100

Long et al. 2016

Effects of low oxygen on marine organisms

- For zooplankton (Ekau et al. 2010 review)
 - Decreased: respiration, feeding, egg development, hatching, abundance, and survivorship.

Franz Neidl

- Increased avoidance, swimming, and contracted vertical range. Increased exposure to predators.
- In general: negative impacts on pelagic / upper ocean species, but mixed impacts on mesopelagic & benthic species adapted to low oxygen levels

Scientific motivation

 How are the increases in low oxygen zones under climate change going to affect plankton community composition and ocean carbon export?

Scientific motivation

 How are the increases in low oxygen zones under climate change going to affect plankton community composition and ocean carbon export?

Harrison et al. in prep

Zooplankton metabolism and low oxygen

"Metabolic Index (MI)"

Deutsch et al. 2015 Gillooly et al. 2016

 $MI = \frac{Oxygen \ supply}{Oxygen \ demand}$

 $MI = \frac{s(\text{env. oxygen, organismal uptake})}{d(\text{temperature, body mass, activity})}$

$$s = \frac{K\Delta pO_2}{\text{RBT}} \text{RSA}$$

RBA = respiratory surface area RBT = respiratory barrier thickness $d = c_i M^b * \text{temperature scaling}$ $\exp(\frac{-E_a}{kT}) \qquad Q10^{\frac{T}{10}}$

$$MI = \frac{\frac{K\Delta pO_2}{RBT}RSA}{c_i M^b Q 10^{\frac{T}{10}}} = \frac{Kc_a c_t M^{a-t} pO_2}{c_i M^b Q 10^{\frac{T}{10}}}$$

 $\mathrm{MI} = cM^x \frac{[O_2]}{Q10^{\frac{T}{10}}}$

Determining the functional form

- P_{crit} equivalent to MI = 1
- Respiration rates fit to Michaelis-Menten curve

0.00

0

5

• Functional scaling applied to zooplankton grazing

10

Metabolic Index (MI)

15

20

Determining the functional form

- P_{crit} equivalent to MI = 1
 - $\mathrm{MI} = dM^{x} \frac{[O_{2}]}{Q10^{\frac{T}{10}}}$
- Respiration rates fit to Michaelis-Menten curve
- Functional scaling applied to zooplankton grazing

Marine Biogeochemistry Library (MARBL)

Control Integration

primary prod. Min:0.011, Max:760.228, Mean:45.236, RMS:70.210

500 400 300 250 200 آے 150 _~ 125 E g 100 75 50 25 1

5

1

80

60

40

20 ^{°°}- ^ш – ш 0 – 20 ш

-40

-60

-80

First attempt

Min:0.004, Max:278.336, Mean:6.757, RMS:24.359

g

5

g C m⁻²

Min:0.015, Max:176.522, Mean:22.856, RMS:28.187

L87.21, Max:131.37, Mean:-12.01, RMS:24.50

POC flux

at 100 m Min:0.039, Max:124.175, Mean:20.497, RMS:22.621

O2 at 300 m Mod - Obs -171.98, Max:123.39, Mean:-10.41, RMS:23.45

$$\text{MIfunc} = \frac{\text{MI}}{1.69 + \text{MI}}$$

$$\dot{g} = \mu_{max} Z \frac{P}{K_m + P} * \text{Tfunc} * \text{MIfunc}$$

Control Integration

primary prod. Min:0.011, Max:760.228, Mean:45.236, RMS:70.210

100

75

50 40

30

20

10

5

2.5 1

Size dependent MI

Min:0.000, Max:560.770, Mean:46.812, RMS:81.048

Min:0.043, Max:183.903, Mean:29.238, RMS:35.487

 $g C m^{-2}$

80

60

40

20

-20

-40

-60

-80

0

 $mmol m^{-3}$

127.37, Max:114.09, Mean:-3.20, RMS:15.76

POC flux

at 100 m Min:0.039, Max:124.175, Mean:20.497, RMS:22.621

O2 at 300 m Mod - Obs :-171.98, Max:123.39, Mean:-10.41, RMS:23.45

Control Integration

primary prod. Min:0.011, Max:760.228, Mean:45.236, RMS:70.210

Corrected to original average grazing rates

Min:0.074, Max:852.899, Mean:51.275, RMS:93.956

Min:0.034, Max:165.466, Mean:22.274, RMS:27.344

100

75

50

40

30

20

10

5 2.5

1

80

60

40

20

0

-20

-40

-60

-80

mmol m

E

U

POC flux

at 100 m Min:0.039, Max:124.175, Mean:20.497, RMS:22.621

O2 at 300 m Mod - Obs -171.98, Max:123.39, Mean:-10.41, RMS:23.45

80

60

40

-40

-60

-80

500

400

300

100 U 75

50

25

1

D

151.31, Max:127.01, Mean:-3.96, RMS:20.71

at 100 m

Control Integration

Min:0.039, Max:124.175, Mean:20.497, RMS:22.621

primary prod. Min:0.011, Max:760.228, Mean:45.236, RMS:70.210

Modified half sat. constant on MI-func

Min:0.009, Max:843.525, Mean:42.220, RMS:73.720

Min:0.035, Max:136.191, Mean:18.941, RMS:22.571

O2 at 300 m

Mod - Obs :-171.98, Max:123.39, Mean:-10.41, RMS:23.45

500

400

300

100

75

50

25

1

100

75

50

40

30

20

10

5

2.5

1

-177.63, Max:126.56, Mean:-8.40, RMS:23.49

 $\rm C~m^{-2}$ D

80

60

40

20 ^{°°-} m 0 long -20 m

-40

-60

-80

σ

$$\dot{g} = \mu_{max} Z \frac{P}{K_m + P} * \text{Tfunc} * \text{MIfunc}$$

$$Tfunc = Q10^{\frac{T - T_{ref}}{10}}$$

Control Integration

primary prod. Min:0.011, Max:760.228, Mean:45.236, RMS:70.210

500

400

300

250 200 -

150 _~ 125 E

υ

g

100

75

50

25

1

100

75

50

40

30

20

10

5

2.5

1

80

60

40

20 ^{°°}- ^ш 0 loum -20 ^ш

-40

-60

-80

 \mathbf{y}^{-1}

 m^{-2}

υ

D

POC flux

at 100 m Min:0.039, Max:124.175, Mean:20.497, RMS:22.621

O2 at 300 m Mod - Obs -171.98, Max:123.39, Mean:-10.41, RMS:23.45

Min:0.085, Max:877.300, Mean:39.273, RMS:71.492

D

60

40

20

0

-20

-40

-60

-80

-mol m

Min:0.043, Max:152.600, Mean:20.333, RMS:23.826

-139.87, Max:128.54, Mean:-3.65, RMS:20.92

Control Integration

primary prod. Min:0.011, Max:760.228, Mean:45.236, RMS:70.210

⁵⁰⁰ 400 300 250 200 5 150 _~ 125 E 100 υ 75 g 50 25 1

100

75

50 40

30

20

10

5

2.5

1

80

60

40

20 ^{°°}- ^ш 0 loum -20 ^ш

-40

-60

-80

 \mathbf{y}^{-1}

 m^{-2}

υ

σ

POC flux

at 100 m Min:0.039, Max:124.175, Mean:20.497, RMS:22.621

O2 at 300 m Mod - Obs -171.98, Max:123.39, Mean:-10.41, RMS:23.45

+ Modification of grazing temperature scaling

Min:0.007, Max:1792.304, Mean:47.134, RMS:67.204

D

Min:0.044, Max:98.701, Mean:20.543, RMS:22.266

-149.27, Max:126.60, Mean:-8.32, RMS:21.41

Control Integration

500

400

300

250 250 200 5

150 _~ 125 E

υ

g

100

75

50

25 1

500

400

300

250 _

150 🦷

50

25

1

>

6

4

 $g C m^{-2}$

primary prod. Min:0.011, Max:760.228, Mean:45.236, RMS:70.210

+ Modification of grazing temperature scaling

Min:0.007, Max:1792.304, Mean:47.134, RMS:67.204

Min:0.080, Max:395.885, Mean:91.184, RMS:99.818

z-sum sm phyto

primary prod. in:0.025, Max:1993.386, Mean:104.941, RMS:117.962

z-sum diaz

primary prod. Min:0.000, Max:560.079, Mean:3.305, RMS:8.992

Min:0.000, Max:8.790, Mean:3.301, RMS:4.168

Discussion

- Many major ocean BGC fields are highly sensitive to small changes in zooplankton grazing rates (poorly constrained, sparse datasets)
- Grazing modifications must account for differences in grazing on diatoms vs. small phytoplankton
- Parameterizations and functional scalings (e.g. Tfunc) often encompasses multiple processes that are difficult to separate
- Next: climate change experiments 21st century transient with zooplankton grazing modifications

Future directions

- Would the rise of OMZs lead to areas dominated by small (micro-) zooplankton?
 - Implementation of multiple zooplankton size classes (micro-, meso-, and macro-)
- How does zooplankton vertical migratory behavior in OMZs affect plankton community composition in multiple trophic levels? How will it feedback on the size of the OMZs?
 - Implementation of vertical migration behavior in MARBL (allows for avoidance of low O₂ areas)

Pierson, Roman et al. unpublished