

Wilbert Weijer and the HiLAT team

Office of Science

HiLAT: Overview

- High-Latitude Application and Testing of Global and Regional Climate Models
- New DOE Science Focus Area (SFA)
 - July 1, 2015
 - Partly continuation of COSIM SFA
 - Funded by DOE's RGCM program
 - Program manager: Renu Joseph
- Joint between LANL and PNNL

HiLAT: Personnel & Capabilities

LANL

Wilbert Weijer (PI) Matthew Hecht Milena Veneziani Joseph Schoonover (PD) Elizabeth Hunke Jorge Urrego-Blanco (PD) Scott Elliott Nicole Jeffery Shanlin Wang Jeremy Fyke Bill Lipscomb Nathan Urban Darin Comeau (PD) Joel Rowland Anastasia Piliouras (PD)

HILAT SFA

PNNL

Phil Rasch (co-Pl) Susannah Burrows Hailong Wang Ben Kravitz Catrin Mills (PD) Hansi Singh (PD)

Capabilities Ocean Sea Ice Marine Biogeochemistry Land Ice UQ Terrestrial Hydrology Atmosphere

Funded Collaborators

Gokhan Danabasoglu (NCAR) Georgina Gibson (IARC)

Collaborative Projects ACME (Accelerated Climate Modeling for Energy)

66% of HiLAT staff shared with ACME

Benchmarking SFA (Biogeochemistry-Climate Feedbacks)

NGEE-Arctic (Next Generation Ecosystem Experiments)

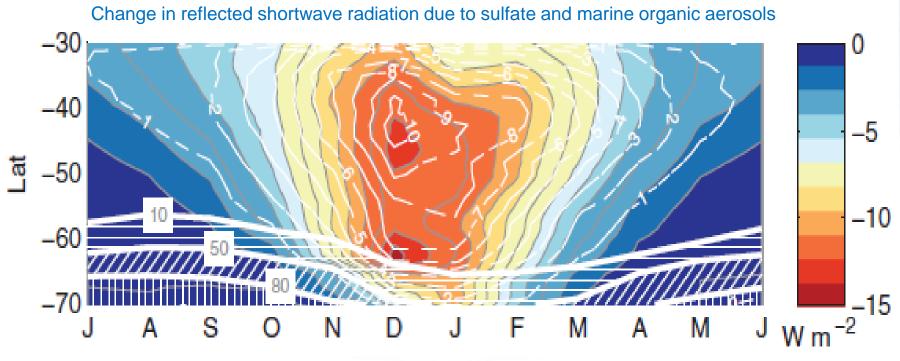
RASM (Regional Arctic System Model)

CESM (Community Earth System Model)

SIPN (Sea Ice Prediction Network)

ISMIP6 (Ice Sheet Model Intercomparison Project)

FAMOS (Forum for Arctic Modeling & Observational Synthesis

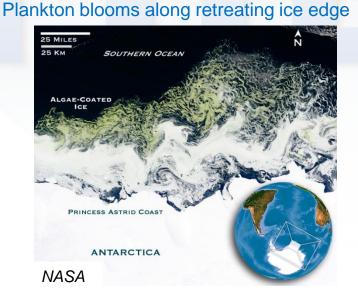

HiLAT: Charge

- Develop cross-cutting projects that involve a significant subset of these disciplines
- Quantify feedbacks between the cryospheric changes and the Earth's heat and water budgets
 - improve projections of high-latitude climate change...
 - ...and the resulting regional and global impacts
 - Theme 1: Regional feedbacks
 - Cryospheric changes affect high-latitude processes that modulate regional warming (polar amplification)
- Theme 2: Global feedbacks
 - Cryospheric changes affect polar/extrapolar interactions that modulate global warming

Impacts on Ecosystems and Clouds

Shanlin, Nicole, Susannah, Scott, and the rest of us

- Marine ecosystems impact clouds
 - DMS emission, precursor to sulfate aerosols
 - Marine Organics injected through sea spray

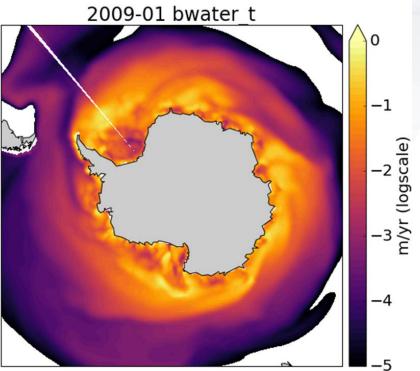


McCoy, **Burrows, Elliott, Rasch** et al. (Sci. Adv. 2015)

Impacts on Ecosystems and Clouds

Shanlin, Nicole, Susannah, Scott, and the rest of us

- Marine ecosystems sensitive to cryospheric changes
 - Changes in sea ice cover and seasonality
 - Light limitation, nutrients exchange
 - Ice sheet disintegration
 - Freshwater/nutrient inputs from ice sheets



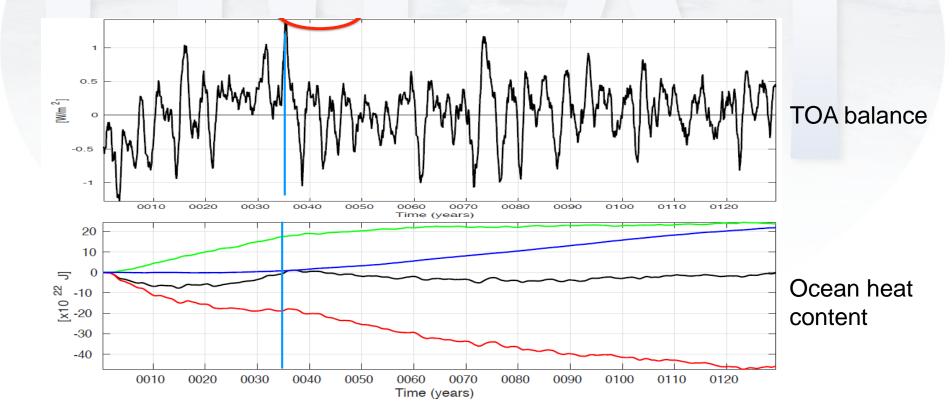
Raiswell

Impacts on Ecosystems and Clouds

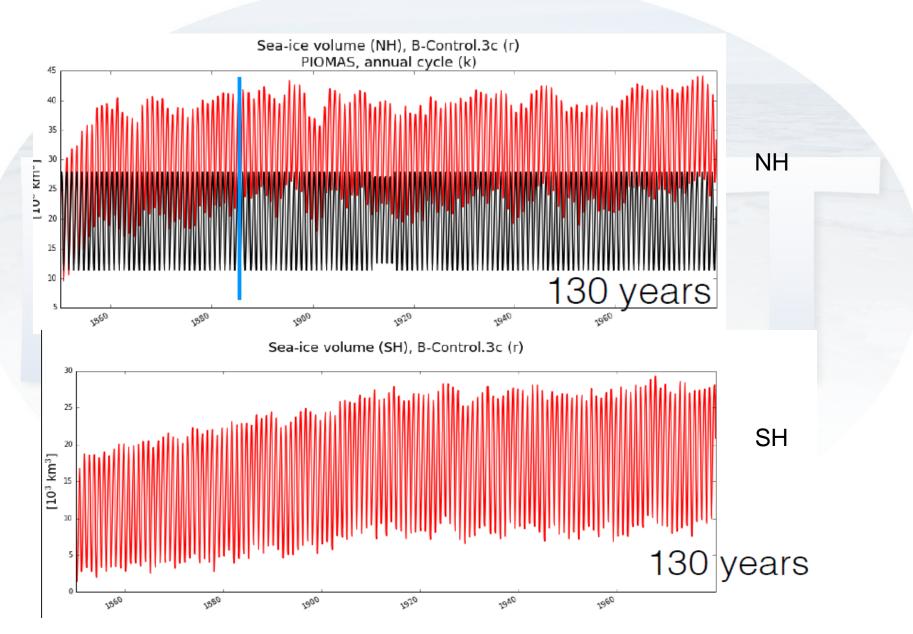
Shanlin, Nicole, Susannah, Scott, and the rest of us

- How will changes in cryosphere affect marine (incl. sea ice) ecosystems?
- How will this affect radiative balance through aerosols?
 2009-01 bwater t
- Approach
 - Ocean/sea ice experiments
 - Fully-coupled experiments
 - Apply perturbations
 - Freshwater
 - Nutrients

Code Base


ACME-HILAT

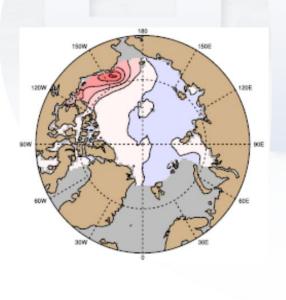
- Branched off of CESM1 (1.3 beta 10)
- POP2 with BEC
 - Includes Phaeocystis
- CICE5
 - Optimized parameter set (Urrego-Blanco et al.)
 - with zBGC
 - BGC coupling between ocean and sea ice
- CAM5
 - With polar modifications, FreezeDry
- Still working on
 - Passing DMS through coupler
- Most experiments done at gx1v6/ne30

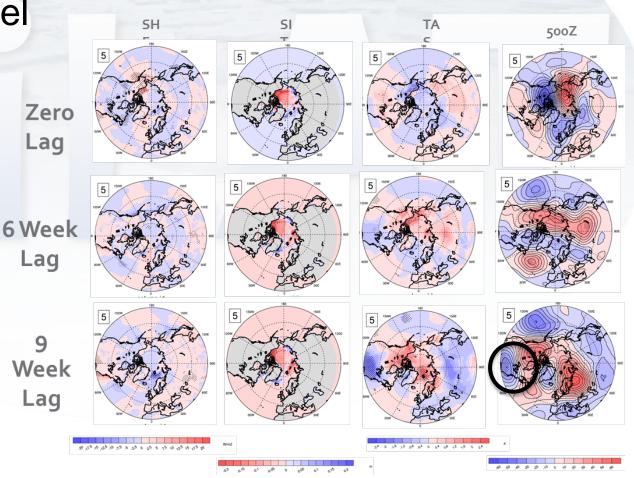

Control Integration

Completed 150 yr PI control integration

- Well-balanced TOA, OHC
- But still significant sea ice biases

Control Integration

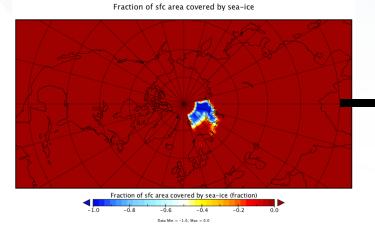


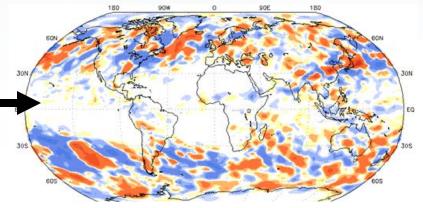

High- to Low-Latitude Connections Mills, Kravitz, Rasch, H. Wang

What is the response of mid-latitude atmosphere to Arctic sea ice decline?

High- to Low-Latitude Connections Mills, Kravitz, Rasch, H. Wang

Approach 1:Use Self-Organizing Maps on freerunning model

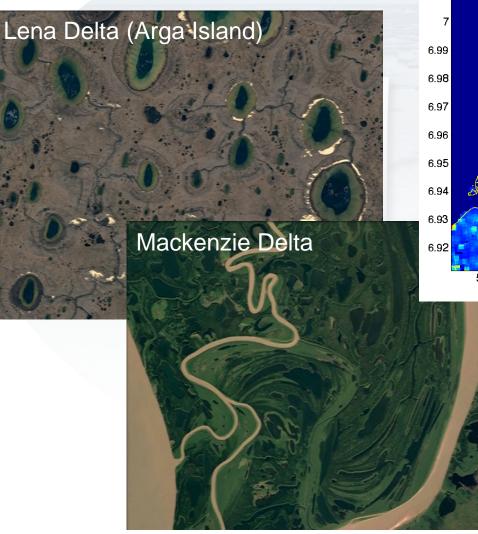


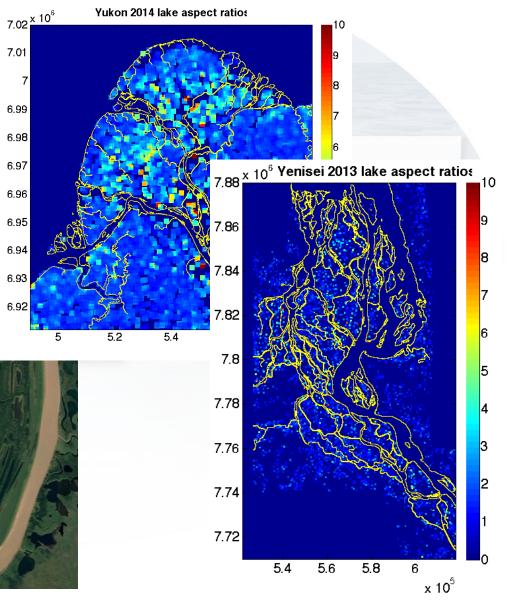

Mills et al. (GRL, 2016)

High- to Low-Latitude Connections

Mills, Kravitz, Rasch, H. Wang

- Approach 2: Use *System Identification* approach to determine climate sensitivities to Arctic sea ice perturbations
 - Divide Arctic in several sectors
 - Perturb each sector daily by removing sea ice
 - Run with random sequence of 1s and 0s
 - Project response back on input sequence


Kravitz et al. (Atmos. Chem. Phys, 2017)


Deltas

Rowland, **Piliouras**

- How much morphologic variability is there between Arctic deltas?
 - How does morphology influence storage and delivery of water, sediment and nutrients?
 - What do spatial patterns of lakes and channels tell us about delta behavior and lateral distribution of fluxes at the shoreline?
 - How do river/delta dynamics and outputs influence entrainment of sediment by sea ice?

Deltas Rowland, Piliouras

Ways for Collaboration

- DOE Office of Science Graduate Student Research (SCGSR) Program
 - "Supplemental awards to outstanding U.S. graduate students to pursue part of their graduate thesis research at a DOE laboratory"
 - Bi-annual
 - Next deadline: May 16, 2017
 - US citizens or permanent residents
- Science Undergraduate Laboratory Internships (SULI)
 - "...encourages undergraduate students to pursue science, technology, engineering, and mathematics (STEM) careers by providing research experiences at the Department of Energy (DOE) laboratories."
 - Summer internships, or fall/spring semester
 - Next deadline: May 31, 2016 (Fall 2016)

Ways for Collaboration

Possible new DOE RGCM call

- Due any moment
- But high-latitudes?