Neodymium isotopes in the ocean model of the CESM

Sifan Gu 2017.03.02

Outline

- Introduction of Nd isotopes
- Nd modeling scheme: sources and sinks
- Parameters tuning for Nd
- Results: Control and model sensitivity
- Summary

Introduction of Nd isotopes

- Nd isotopes: ¹⁴⁴Nd and radiogenic ¹⁴³Nd
- ¹⁴⁷Sm->¹⁴³Nd, half life 106 billion years
- Nd concentration shows a nutrient-like behavior

Goldstein et al. 2003

Introduction of Nd isotopes: ϵ_{Nd}

• Isotope ratio: ¹⁴³Nd/¹⁴⁴Nd

$$\begin{split} \epsilon_{Nd} &= [\frac{(\frac{^{143}Nd}{^{144}Nd})_{sample}}{(\frac{^{143}Nd}{^{144}Nd})_{bulkEarth}} - 1] \times 10^4 \\ \text{(}^{^{143}\text{Nd}/^{144}\text{Nd}}\text{)}_{\text{bulkEarth}} \text{ is } 0.512638 \end{split}$$

- Younger continent, larger (more radiogenic) ε_{Nd} Older continenet, smaller ε_{Nd}
- ε_{Nd} as water-mass mixing tracer: AAIW:~-8 - -9 AABW: ~-9 NADW: ~-13 - -14
- Biological fractionation of Nd is negligible
- ε_{Nd} has been increasingly used in paleoceaography

Albare & Goldstein, 1992

von Blanckenburg, 1999

Nd modeling scheme

Implementation of Nd in CESM largely follows Rempfer et al. 2011 (Bern3D model):

¹⁴³Nd and ¹⁴⁴Nd are two separate tracers

Sources: River, Dust & Boundary

Sink: Sedimentation

Internal Cycling: reversible scavenging

Nd modeling scheme: dust source

1

Mahowald et al., 2005

Tachikawa et al., 2003

$$S_{dust} = F_{dust} \times c_{dust} \times \beta_{dust} \times \frac{1}{\triangle z_1}$$

 F_{dust} : surface dust flux c_{dust} : global mean Nd concentration in dust, 20 µg/g, <u>Grousset et al., 1998</u> β_{dust} : Nd release from dust, 20%, <u>Greaves et al., 1994</u> Δz_1 : thickness of first ocean layer

Nd modeling scheme: river source

$$S_{river} = F_{river} \times c_{river} \times (1 - \gamma_{dust}) \times \frac{1}{\triangle z_1}$$

 F_{river} : river runoff, from coupler c_{river} : global mean Nd concentration in river γ_{dust} : estuaries Nd removal,

0.7, <u>Elderfield et al., 1990</u> Δz_1 : thickness of first ocean layer

Nd modeling scheme: boundary source

$$S_{boundary} = f_{boundary} \times \frac{A}{A_{total}} \times \frac{1}{V}$$

Upper 3000 m

The boundary source per unit area is assumed to be constant with depth and globally uniform

f_{boundary}: total boundary source (tuning parameter)
A_{total}: total sediment surface of the continental margins
A: grid area
V: grid volume

Jeandel et al., 2007

Nd modeling scheme: internal cycling

Reversible Scavenging: the physical process of adsorption and desorption of Nd on particlesurfaces(previously used in Pa/Th modeling, e.g. Siddall et al. 2005)

Nd modeling scheme: internal cycling

Annual mean particle fluxes at 105m in CESM

Parameters tuning for Nd (abio_Nd)

Parameters: $f_{boundary}$ and $(\frac{[Nd]_p}{[Nd]_d})_{avg}$ Cost function:

(total 99 sets of experiments)

$$J = \frac{1}{N} \sum_{k=1}^{N} |obs_k - model_k|$$

- Observation from van de Flierdt et al. 2016 (larger dataset than used in Rempfer et al. 2011)
- J(Nd) minimum $J(\varepsilon_{Nd})$ minimum Control:

$$f_{bounday} = 4 \times 10^9$$
$$(\frac{[Nd]_p}{[Nd]_d})_{avg} = 9 \times 10^{-4}$$

Results: Control

Nd inventory: 4.3×10^{12} g (4.2×10^{12} g from Arsouze et al., 2009; Tachikawa et al., 2003) Residence time τ_{Nd} 785 yr (in the range of estimation by Tachikawa et al. 2003)

Results: Control (Track from Atlantic to Pacific)

Results: Control (Seafloor & selected vertical profiles)

Results: Control (Seafloor & selected vertical profiles)

Results: Control

Atlantic zonal mean ε_{Nd} (color) and salinity (contour)

Results: Sensitivity on f_{boundary}

Nd

 $\boldsymbol{\epsilon}_{Nd}$

 $f_{boundary}/2$

Results: Sensitivity on $[Nd]_p/[Nd]_d$

Summary

- Following Rempfer et al. 2011, we implement Nd isotopes in CESM and with the parameters tuned under present-day climate forcing, our model is able to simulate global distribution of both Nd concentration and ε_{Nd} , with reasonable agreement with the observation.
- Nd concentration and ε_{Nd} in our model shows similar sensitivities to the total boundary source and ratio of particle related Nd to dissolved Nd as in previous modeling study (Rempfer et al., 2011)
- Nd has both abiotic version (computational efficient) and biotic version. Comparing these two versions can help to separate the effect of circulation change and particle fields change on Nd.
- This Nd model provides a useful tool to study past changes of ocean and climate.

Thanks

Isotope ratio: ¹⁴³Nd/¹⁴⁴Nd

$$\epsilon_{Nd} = \left[\frac{\left(\frac{143}{144}\frac{Nd}{Nd}\right)_{sample}}{\left(\frac{143}{144}\frac{Nd}{Nd}\right)_{bulkEarth}} - 1\right] \times 10^{4}$$
(¹⁴³Nd/¹⁴⁴Nd)_{bulkEarth} is 0.512638

- Decay system: ¹⁴⁷Sm->¹⁴³Nd λ¹⁴⁷Sm = 6.54*10⁻¹² yr⁻¹, Slow relative to 4.56Gyr age of solar system
- Nd is more likely to enter magma than Sm: Younger continent, larger ε_{Nd}

Goldstein et al. 2003

Exp	$[Nd]_p$	f _{boundary}	Inventory	τ_{Nd}	J _{[Nd]d}	$J\epsilon_{Nd}$	J ₁	J ₂
	$[Nd]_d$	(g yr-1)	(g)	(yr)	(pmol kg ⁻¹)		(%)	(%)
CTRL	0.0009	4×10 ⁹	4.3×10 ¹²	785	8.1	1.76	72	82
J _{[Nd]d} min	0.0006	2×10 ⁹	4.6×10 ¹²	1282	6.9	2.07	79	76
$J\epsilon_{Nd}$ min	0.0016	1×10 ⁹	0.9×10^{12}	351	16.2	1.53	19	90
BS05	0.0009	2×10 ⁹	2.8×10 ¹²	796	10.1	1.71	58	83
BS20	0.0009	8×10 ⁹	8.0×10 ¹²	843	15.3	1.83	45	81
PD05	0.0004	4×10 ⁹	9.3×10 ¹²	1680	18.7	2.5	26	70
PD20	0.0018	4×10 ⁹	2.2×10 ¹²	400	14.4	1.88	42	80
CTRL_R	0.001	5.5×10 ⁹	5.1×10 ¹²	720	9.3	1.78	64	83
CTRL_R*	0.001	5.5×10 ⁹	4.2×10 ¹²	700	9	1.66	70	83
EXP1	0.0008	5×10 ⁹	6.02×10 ¹²	915	9.8	1.8	60	82
EXP2	0.0009	5×10 ⁹	5.29×10 ¹²	805	9.1	1.8	66	82
CTRL_old	0.0008	4×10 ⁹	5.0×10 ¹²	900	9.6	1.8	71	82