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AMOC in TRACE21
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Q1: 
Why AMOC intensity comparable 

between glacial and Holocene?
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Q2: 
What caused abrupt change of 

AMOC?



Q1: Why AMOC intensity comparable between glacial and 
Holocene?
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Q1: 
Why AMOC intensity is comparable 

between glacial and Holocene?
 Opposite responses to CO2 and 

Ice sheet

Then:

Q1a:  Why AMOC intensifies with 
rising CO2? 

Q1b:  Why AMOC decreases with 
Ice sheet retreat?



Q1a: AMOC response to CO2: across Different Time Scales

Zhu et al., 2014, CD
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Stage 1: stronger heat flux in NA => weaker AMOC (Gregory et al., 2005)
Stage 3: less SO sea ice => less (local) brine injection => less AABW => stronger AMOC  (Shin et al., 2003)
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Stouffer et al., 2003, CD

AMOC response to CO2: across time scales, sensitivity

GFDL R30
ECHAM5-JSBACH-MPIOM
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Zhang et al., 2014, Na



AMOC response to CO2: Different States/Time Scales
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Stage 1: stronger heat flux in NA => weaker AMOC (Gregory et al., 2005)
Stage 3: less SO sea ice => less (local) brine injection => less AABW => stronger AMOC  (Shin et al., 2003)
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Stage 2: LGM large sea-ice retreat => surface heat loss => stronger AMOC (e.g. Oda et al., 2012)
(=>heat transport =>more sea ice melt => more surface heat loss, positive feedback)

Zhu et al., 2014, CD



Back et al., 2013, JC

Hydrological Response to slow and fast global warming



Ice sheet lowing => jet northward migration => sea ice expansion 
=> heat loss  (and  density flux) cut off  =>  AMOC reduced

Q1b: AMOC response to ice sheet retreat

Zhu et al., 2014, GRL
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Ice sheet topography sensitive runs
NH ice sheets thickness, % of LGM: 0, 20, 40, 60, 80
each runs for 200 years               (red ---------> blue) 
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Global SAT trend

AMOC response to ice sheet sensitivity

Lu Z., 2017.

ECHAM5-JSBACH-MPIOM

AMOC trend

Zhang et al., 2014, Na



Summary of AMOC response mechanisms
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I: NA heat flux decrease
⇒ AMOC decrease (~ 10 yr)

II: NA  sea ice decrease
=>Arctic meltwater import decrease
=>AMOC increased(~100 yr)

III: SO sea ice decrease
=>  Local brine injection decrease
⇒ AABW decrease
=>  AMOC increase (~1000 yr)

Time scale dependent
State dependent 
II, III: dominant in glacial climate

Zhu et al., 2014, CD

Lowering of ice sheet
=>Westerly jet shifted northward
=>sea ice expanded
=>heat loss cut off
=>AMOC reduced

Zhu et al., 2014, GRL
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Zhang et al., 2014, Na



Liu et al., 2009, Sci

Q2: AMOC Instability and Abrupt Climate Change? 
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Q2: Is AMOC bistable in real world

Paleo obs:
meltwater chronology ?



Bard et al., 2000
BA

Meltwater Flux

Paleo perspective: Meltwater History Prior to BA

Deschamps et al., 2012
BA

NH meltwater SH meltwater (MWP1A, Clark et al., 1996)



Thermohaline Instability and Abrupt Climate Change
A Historical Perspective
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Thermohaline instability and abrupt climate change 

Rahmstorf, 1996
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Fov: Freshwater transport by AMOC (overturning)

Observation State of Art Models

Obs

CMIP5 

Fov

Mov=FovS-FovN

CTL

ADJ



Future AMOC Response: Before and After Bias Correction 

CTL hosing ADJ hosing

AMOC response to North Atlantic Melting Water Pulse (such as Greenland melting)

Liu et al., 2014,  JC

AMOC response to 2xCO2

Liu et al., 2017, Sci Adv. 
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May not be a fantasy!

The decade after 
next decade.



Biased Model

Perfect Model

Flux 
Adjustment

Adjusted Model

Current Options:
A: A model without flux adjustment but with the wrong AMOC stability?
Or
B: A model with flux adjustment (and therefore related uncertainty) and
a likely correct AMOC stability?



Summary of AMOC response mechanisms

Q1: AMOC Deglacial Evolution

• Strengthened by slow CO2 increase 
due to melting of sea ice increases surface heat loss
time scale dependent! state dependent!

• Weakened by ice sheet retreat
due to stronger wind sea ice expansion

 Opposing each other to generate an AMOC of comparable 
strength at LGM and Holocene

Q3: What are the relative magnitudes?

Q2: AMOC Instability

• AMOC may be more unstable than projected by current
CGCMs!? 

Q4: Can paleo help clarify AMOC stability?
What to do for the future, Now!?



The End



---Sea ice  margin
----mixed layer depth
Shade: buoyancy flux

The Role of North Atlantic Sea Ice, Heat Loss

Zhu et al., 2014, CD



The Danger of Flux Adjustment   ! ? 



Implication to the Hysteresis response to ice sheet:
Would it be reduced by CO2?

Zhang et al., 2014, Na



The Role of North Atlantic Heat Loss

Zhu et al., 2014, CD
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AMOC Instability in Models: Inconsistency  

EMICs

Rahmstorf et al. 2005, GRL
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Stouffer et al., 2006, JC
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Model-Model inconsistency

Why CGCMs mono-stable, but EMICs bistable? 

CCSM3



Liu W. et al., 2014

Attribution of climate bias on MovS
Ψmean,  ΔS 

ADJ-CTL

Surface Bias

But, tropical bias is not the whole story….
Tropical adjustment, ….



Δ Mov for CGCM (AR4):   Monostable

Liu . W. et al., 2014, JC

Stability Indicator

<0   =>    Bistable

 MovS MovN ΔMov 
Observation -0.3 –  

-0.1 
-0.16 -0.14 – 

+0.06 
    

No Flux Adjustment       
BCCR-BCM2.0 (Norway) 0.023 -0.127 0.150 
CCSM3(T85) (USA) 0.078 -0.185 0.263 
CNRM-CM3 (France) 0.290 -0.097 0.387 
CSIRO-MK2.0 (Australia) -0.030 -0.465 0.435 
UKMO-HadCM3 (UK) 0.359 -0.013 0.372 
IPSL-CM4 (France) -0.008 -0.128 0.120 
MIRCO3.2(medres) 
(Japan) 

-0.004 -0.110 0.106 

CCSM3(T31) (USA) -0.013 -0.127 0.114 
Ensemble Mean 0.1 -0.16 0.26 
    
Flux Adjustment       
CGCM3.1(T63) (Canada) -0.118 -0.082 -0.036 
MRI-CGCM2.3.2 (Japan) -0.080 -0.160 0.080 
ECHO-G (Germany-
Korea) 

0.046 -0.009 0.055 

CCSM3(T31_ADJ) (USA) -0.197 -0.095 -0.102 
Ensemble Mean -0.1 -0.086 -0.01 

  

No Flux Adj: mono-stable; Flux Adj: bi-stable!

 CGCM in AMOC Stability: Overstabilization

>0   =>    Monostable



Summary for AMOC Bistability

Δ Mov seems to work best!

AMOC is likely weakly bi-stable in real world;

AMOC is over-stabilized in most CGCMs, because of, at 
least partly, the tropical bias.



AMOC Instability

AMOC is likely weakly bi-stable in real world;
AMOC is over-stabilized in most CGCMs, because of, at least 
partly, the tropical bias.

Implications: Future abrupt change may be underestimated 
in current CGCMs?

Summary
AMOC Deglacial Evolution

AMOC is intensified by slow CO2 increase (time scale 
dependent, state dependent), but reduced by ice sheet 
retreat such that AMOC is of comparable strength at LGM 
and Holocene

Implications: Future projection can’t simply use glaical
evolution as analogy, because of different time scales, 
climate states and different forcings





Increasing NHIS Increasing CO2ECHAM5-
JSBACH-MPIOM

Zhang  et al., 2014



Otto-Bliesner et al., 2007, GRL
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Freshwater Transport and Tropical Bias 
(in AR4 CGCMs) 

Liu et al., ,2014, JC
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