

Exploring long term climate variability in the Quaternary with iCESM1.2

Clay Tabor¹, Bette Otto-Bliesner¹, Esther Brady¹ Michael Erb², Jiang Zhu³, Jesse Nusbaumer⁴

- 1: National Center for Atmospheric Research
- 2: University of Southern California
- 3: Pennsylvania State University
- 4: Goddard Institute for Space Studies

Climate Model

- Oxygen-18 and Deuterium tracking in all model components of the Community Earth System Model 1.2 (Nusbaumer et. al.; Wong et al.; JAMES, *in review*)
 - Developed by NCAR, CU, OSU, and UW-M

CESM Winter Working Group

– Fully coupled 2° atm / Ind and 1° ocn / ice

CESM Winter Working Group Model Simulations

- 10 runs with different orbits, CO₂, and land ice
 - Initialized from equilibrium climate simulations

Run Type	Obliquity (°)	Longitude of perihelion (°)	Eccentricity	CO₂ (ppm)	Ice sheets
Preindustrial	23.441	102.72	0.0167	284.7	0 ka BP
Low obliquity	22.079				
High obliquity	24.48				
WS perihelion		90	0.0493		
SS perihelion		270	0.0493		
AE perihelion		0	0.0493		
VE perihelion		180	0.0493		
0 Eccentricity			0		
Low CO ₂				142	
Ice Maximum					21 ka BP

Reconstruction Techniques

• Linear combinations of end-member forcing experiments well replicate many aspects of long term variability (Erb et al., 2015)

CESM Winter Working Group

- $-\Delta X_{ti} = (\Delta X_{orbit} * Orbit_{ti}) + (\Delta X_{GHGs} * GHG_{ti}) + (\Delta X_{ice} * SL_{ti})$
- Can the same technique work for water isotopes?

CESM Winter Working Group Example Applications

- China Speleothem δ^{18} O Records
 - Sanbao Cave (Cheng et al., 2009)
- Antarctic Ice Core δD Records
 - Fuji Dome (Kawamura et al., 2007) / Vostok (Petit et al., 2001) / Epica Dome C (Jouzel et al., 2007)
- North Atlantic Deep Water δ^{18} O Records
 - Benthic Foram Records (Lisiecki and Raymo, 2005)

• δ^{18} O linear combination: good frequency but low amplitude

• δ^{18} O linear combination: good frequency but low amplitude

CESM Winter Working Group

Sanbao Cave Reconstruction

- Model bias?
 - Strong δ¹⁸O
 gradients in
 region
- Cave water sourced from higher altitudes?

 Circulation changes are important for signals (Liu et al., 2012)

CESM Winter Working Group

Sanbao Cave Reconstruction

- Model bias?
 - Strong δ¹⁸O
 gradients in
 region
- Cave water sourced from higher altitudes?

• Model bias? Cave water sourced from higher altitudes?

• Forcings have different local temp and precip relationships

CESM Winter Working Group

Ice Core Reconstructions

• HDO well captured by model simulations without land ice forcing

• Amplitude match especially good in Winter months

- Can model / proxy mismatch information Antarctic ice volume evolution?
 - Response similar to Antarctic
 ice volume simulations (Pollard
 and DeConto, 2009)

- Can model / proxy mismatch information Antarctic ice volume evolution?
 - Response similar to Antarctic ice volume simulations (Pollard and DeConto, 2009)

- Can model / proxy mismatch information Antarctic ice volume evolution?
 - Response similar to Antarctic ice volume simulations (Pollard and DeConto, 2009)

CESM Winter Working Group Deep Water Signals

 Can infer future deep water signal from areas of deep water formation

CESM Winter Working Group Deep Water Signals

 Small δ¹⁸O variability in locations of NADW formation due largely to circulation changes

CESM Winter Working Group Deep Water Signals

- Linear theory unlikely a good assumption for NADW
- Signal dominated by land ice and CO₂
- Relationship between δ¹⁸O and temperature depends on the forcing

CESM Winter Working Group

Outlook

Simulations can help us decompose signals in the isotopic records

• Use model outputs in specific proxy models

$$\begin{split} \Delta X_{\text{ecc_adjustment}} &= \left(\frac{X_{\text{AE}} + X_{\text{WS}} + X_{\text{VE}} + X_{\text{SS}}}{4}\right) - X_{0\text{ecc}}, \\ \Delta X_{\text{prec}} &= \frac{e}{e_{\text{prec}}} \left\{ \left[\frac{X_{\text{AE}} - X_{\text{VE}}}{2} \cos(\omega) + \frac{X_{\text{WS}} - X_{\text{SS}}}{2} \sin(\omega)\right] + \Delta X_{\text{ecc_adjustment}} \right\}, \\ \Delta X_{\text{orbit}} &= \Delta X_{\text{obliq}} + \Delta X_{\text{prec}}, \\ \Delta X_{\text{corbit}} &= \Delta X_{\text{obliq}} + \Delta X_{\text{prec}}, \\ \Delta X_{\text{CO2}} &= 5.35 \ln\left(\frac{\text{CO2}}{\text{CO2}_0}\right) \left(\frac{\Delta X_{\text{HalfCO2}} - \Delta X_{\text{preind}}}{-3.71}\right), \\ \Delta X_{\text{CH4}} &= (0.036[(\text{CH4})^{0.5} - (\text{CH4}_0)^{0.5}] - \{0.47 \ln[1 + 2.01 \times 10^{-5}(\text{CH4} \times \text{N2O}_0)^{0.75} + 5.31 \times 10^{-15} \times \text{CH4}(\text{CH4} \times \text{N2O}_0)^{1.52}] - 0.47 \ln[1 + 2.01 \times 10^{-5}(\text{CH4}_0 \times \text{N2O}_0)^{0.75} + 5.31 \times 10^{-15} \times \text{CH4}_0(\text{CH4}_0 \times \text{N2O}_0)^{1.52}] \}) \left(\frac{X_{\text{HalfCO2}} - X_{\text{preind}}}{-3.71}\right), \end{split}$$

base = X_{0ecc} ,

 $\Delta X_{\rm obliq} = \frac{\epsilon - \epsilon_{\rm preind}}{\epsilon_{\rm high} - \epsilon_{\rm low}} (X_{\rm high} - X_{\rm low}),$

$$\begin{split} \Delta X_{\rm GHGs} &= \Delta X_{\rm CO2} + \Delta X_{\rm CH4}, \\ \Delta X_{\rm ice} &= \frac{\Delta {\rm sealevel}}{\Delta {\rm sealevel}_{\rm LGM}} (X_{\rm IceSheets} - X_{\rm preind}), \\ \Delta X_{\rm total} &= \Delta X_{\rm orbit} + \Delta X_{\rm GHGs} + \Delta X_{\rm ice}. \end{split}$$