

Thermosphere-lonosphere Integration at NRL

Fabrizio Sassi, Sarah E. McDonald, David Siskind Naval Research Laboratory – Washington, DC Jennifer Tate Computational Physics, Inc. – Springfield (VA)

<u>fabrizio.sassi @nrl.navy.mil</u> <u>sarah.mcdonald @nrl.navy.mil</u> <u>david.siskind @nrl.navy.mil</u> jtate @cpi.com

U.S. Naval Research Laboratory

- NRL has developed a thermosphere-ionosphere prediction capability, the Highly Integrated Thermosphere and Ionosphere Demonstration System (Navy-HITIDES), utilizing standardization and regridding tools of the Earth System Modeling Framework (ESMF).
- Navy-HITIDES is built on the physics and numerical algorithms of the NRL SAMI3 model. SAMI3 is a state-of-the-art, physics-based ionosphere model.
- Presently, Navy-HITIDES is coupled to the extended version of the Whole Atmosphere Community Climate Model (WACCM-X) with the day-to-day variation of weather provided by atmospheric specifications from the Navy Global Environmental Model (NAVGEM).
 - Integrated into this coupled model are the effects of drivers from atmospheric weather, the Sun, and the changing high altitude composition.

Current Status and Plans

- One way coupling (thermosphere → ionosphere) is completed (summer 2016)
- Short-term goals (few months):
 - Two-way coupling (thermosphere ← → ionosphere) is under-way:
 - Mapping of scalar (electron temperature and O⁺) and vector (ion-drift velocities) fields from the geo-magnetic to the WACCM grid
 - Use electron heating and ion drag from existing code in WACCM-X with HITIDES inputs
- Extended time frame goals (12 months):
 - Data assimilation: Kalman-filter to assimilate ion drift velocities (NASA/CINDI)
 - Code modernization and possibly inclusion of NRL D-region model (OASIS)
 - Nesting of regional high-resolution ionosphere in the global ionosphere

HITIDES + SD-WACCM-X

- Nudging vertical domain: 50 km vs. 90 km
 - ✓ SD-WACCM-X: Atmospheric specifications from NOGAPS-ALPHA
 - ✓ MLT behavior around the SSW of 2009
- Nudging with different atmospheric specifications
 - ✓ HITIDES + SD-WACCMX-X: NOGAPS-ALPHA (3DVAR) vs. HA-NAVGEM (hybrid-4DVAR)
- Nudging strength: 10 h vs. 0.5 h
 - HITIDES + SD-WACCM-X: Atmospheric specifications from High Altitude NAVGEM
 - ✓ Ionospheric response

Nudging Vertical Domain: 90 km vs. 50 km

Nudging Domain: EOF1 – 90 km

Z=89 km – Perc Variance = 39%

Nudging up to 90 km

Z=89 km – Perc Variance = 41%

Nudging up to 50 km

Structure of the polar vortex in the MLT is visibly different: Meridional gradients Polar centric

U.S. Naval Research Laboratory

SSW Behavior: MLT Response

U.S.NAVAL

RESEARCH

(1) Conclusions: Vertical Domain

- Simulations of the MLT are unambiguously different around a SSW.
 - > MLT polar vortex and meridional gradients
 - Cold anomaly and MLT precursors of the SSW
 - Stratopause recovery
 - Wave structure

Nudging with Different Atmospheric Specification

U.S. Naval Research Laboratory

Semi-Diurnal Tide (SW2)

WACCM-X w/ NOGAPS-ALPHA 6-hourly cadence Zonal Wind SW2 Amplitude at 110 km

WACCM-X w/ HA-NAVGEM 3-hourly cadence Zonal Wind SW2 Amplitude at 110 km

The 3-hour product can better capture the semi-diurnal tide

• SW2 is twice as strong in WACCM-X with HA-NAVGEM forcing

U.S. Naval Research Laboratory

Non-Migrating Tides (DE2 & SE3)

Zonal Wind Amplitudes at 110 km Latitude vs. Day of Year

➔ Contributes to wave-3 pattern of ionospheric maps at a fixed LT

➔ Contributes to wave-4 pattern of ionospheric maps at a fixed LT

U.S. Naval Research Laboratory

Day-to-Day Variability of NmF2

Navy-HITIDES/WACCM-X Variation in NmF2 during January 2010 $1-\sigma$ Standard Deviation of NmF2 at 13:00 LT

Simulations with NAVGEM forcing capture more day-to-day variability in the ionosphere

U.S. Naval Research Laboratory

U.S.NAVAL

RESEARCHL LABORATORY

(2) Conclusions: Different Atmospheric Specifications

- Navy-HITIDES has been one-way coupled to WACCM-X
- Simulated January 2010 using forcing from:
 - > NOGAPS-ALPHA (6-hour)
 - > HA-NAVGEM (3-hour)
- 3-hour HA-NAVGEM forcing results in better resolution of SW2 in SD-WACCM-X
- Navy-HITIDES/WACCM-X with NAVGEM improves ionospheric specification
 - Better day-to-day and longitudinal variability
 - Closer match to observations

Nudging Strength: 10 h vs. 0.5 h

U.S. Naval Research Laboratory

TEC: 2 – 31 January 2010

Gray : Daily TEC Black : January average Yellow : 1-standard deviation Red : 17,19-21 January 2010

NmF2 Variability: Standard Deviation January 2010

U.S. Naval Research Laboratory

U.S.NAVAL

RESEARCH

(3) Conclusion: Nudging Strength

- Nudging strength (10 h vs. 0.5 h) has important consequences for the ionospheric variability (NmF2)
- Modest changes appear in the TEC
- Results obtained obtained with a weaker nudging strength (50 h) show a significantly decreases ionospheric variability.

Backup Slides

U.S. Naval Research Laboratory

T/I Coupling Overview

U.S. Naval Research Laboratory

Wave Structure

Wave-3 and Wave-4 Amplitudes at 10:00 LT

Vertical ExB drift at 10:00 LT Wave-3 amplitude (DW4, SPW3, DE3, SW5) Wave-4 amplitude (DE3, SPW4, SE2)

Wave-3 + Wave-4 amplitude (shifted and amplified to match ExB drift)

- Amplitudes of wave-3 and wave-4 are similar during each of the 5-day periods
- Appearance of 4 peaks during 17 21 January primarily due to shift in phase of wave-3

U.S.NAVAL

RESEARCH LABORATORY