# Errors in the mesosphere in specified dynamics WACCM

Anne Smith, Nick Pedatella, Dan Marsh, Tomoko Matsuo

Smith, Pedatella, Marsh, and Matsuo, J.Atmos.Sci., 2017 (in press), doi:10.1175/JAS-D-16-0226.1

## Are the upper mesosphere and lower thermosphere "slave" to the lower atmosphere?

## **Questions:**

- Does the unpredictability of atmospheric dynamics originate in the lower atmosphere?
- How are the errors propagated?
- To what altitude is meteorological data needed in order to predict the dynamical variability above?

#### **Question that will not be addressed:**

• Is a global model with moderate resolution a sufficient tool to address the above?

## Tool used: WACCM4

## WACCM runs

- free-running (FR)
  - 45-day base run, beginning January 1; meteorological ("met") data saved every hour
  - two additional realizations with slight differences in initial tropospheric zonal wind
- nudged (SD=specified dynamics)
  - nudge with meteorological fields from base run
    - temperature, horizontal winds, several surface variables
  - use initial conditions that are slightly different from "base"
  - several runs to test aspects of nudging
    - altitude range of meteorological data
    - frequency of meteorological data
- entire process repeated with three different gravity wave formulations:
  - WACCM4 (Lindzen-type GW parameterization with interactive sources depending on convection and fronts)
  - WACCM3 (same GW parameterization except with specified GW sources)
  - no GW parameterization ("Rayleigh friction" damping)

#### NOTE: All SD runs here use output from another WACCM run; not actual reanalysis data.

## WACCM runs

Advantages of this setup

- "true" atmosphere is known (=BASE case)
- model physics agrees perfectly with meteorological data
- external forcing (due to e.g. solar or composition changes) is identical in all simulations
- meteorology fields for nudging are perfect; no interpolation onto a different horizontal grid is needed
- allows control over data frequency and vertical range for nudging
- FOCUS: efficacy of nudging process in reducing simulation errors

## nudging process

$$T_{predicted} = T_{n-1} + \varDelta T_{advection} + \varDelta T_{diabatic} + \varDelta T_{adiabatic} + \varDelta T_{diffusion}$$

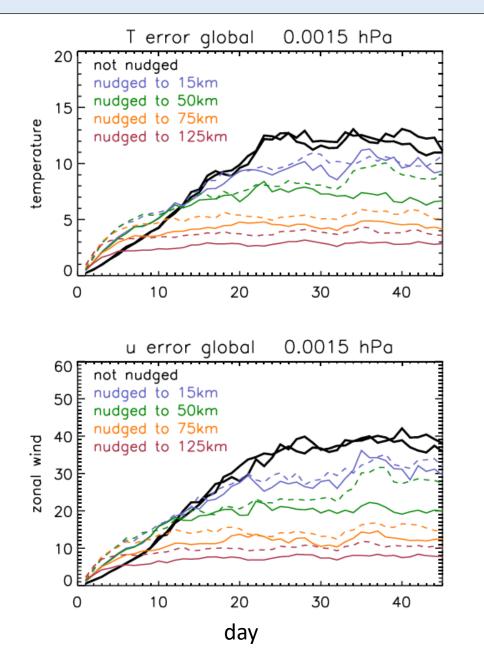
free running:  $T_n = T_{predicted}$ 

nudged:  $T_n = (1 - \alpha)T_{predicted} + \alpha T_{met}$ 

applied every timestep over certain vertical range

Linear interpolation in time is used to get  $T_{met}$  at every timestep

#### VARIATIONS IN NUDGING


- altitude range where nudging is applied
- frequency that *T<sub>met</sub>* is available
- strength of  $\alpha$

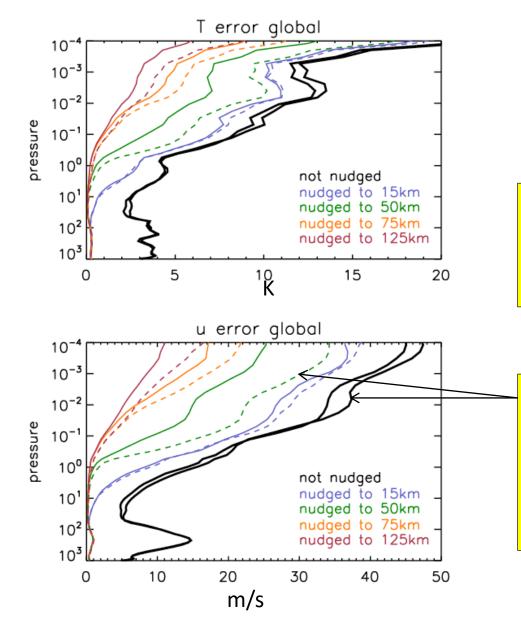
## WACCM4 free running (FR) and nudging (SD) runs

| name       | type | nudge region* | frequency of<br>met data | relaxation<br>time | comments                          |
|------------|------|---------------|--------------------------|--------------------|-----------------------------------|
| BASE       | FR   |               |                          |                    | used to generate all "met" fields |
| DIFF1      | FR   |               |                          |                    | perturbed initial u               |
| DIFF2      | FR   |               |                          |                    | perturbed initial u               |
| 15km 1 hr  | SD   | nudge <15 km  | 1 hr                     | 50 hrs             |                                   |
| 15km 6 hr  | SD   | nudge <15 km  | 6 hr                     | 50 hrs             |                                   |
| 50km 1 hr  | SD   | nudge <50 km  | 1 hr                     | 50 hrs             |                                   |
| 50km 6 hr  | SD   | nudge <50 km  | 6 hr                     | 50 hrs             | standard for SD-WACCM             |
| 75km 1 hr  | SD   | nudge <75 km  | 1 hr                     | 50 hrs             |                                   |
| 75km 6 hr  | SD   | nudge <75 km  | 6 hr                     | 50 hrs             |                                   |
| 125km 1 hr | SD   | nudge <125 km | 1 hr                     | 50 hrs             |                                   |
| 125km 6 hr | SD   | nudge <125 km | 6 hr                     | 50 hrs             |                                   |

\* nudging tapers off over 10 km region above this level

## RMS error growth in the MLT




#### ~90 km

RMS using data at every longitude & hour

solid: met data updated every hour dashed: met data updated every 6 hours

initial error growth is faster for nudged runs RMS error plateaus after 10-25 days

## RMS error growth versus pressure



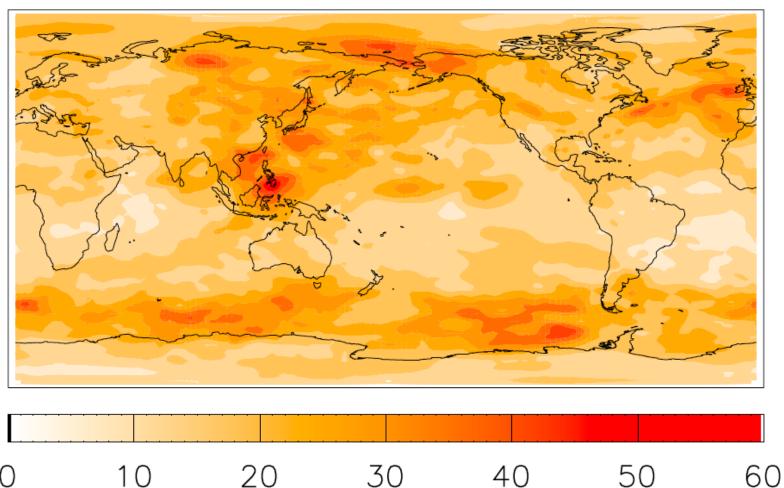
solid: met data available every hour dashed: met data available every 6 hours

error from last 10 days of each run

error grows above ~1hPa even when the temperature and horizontal winds are nudged there

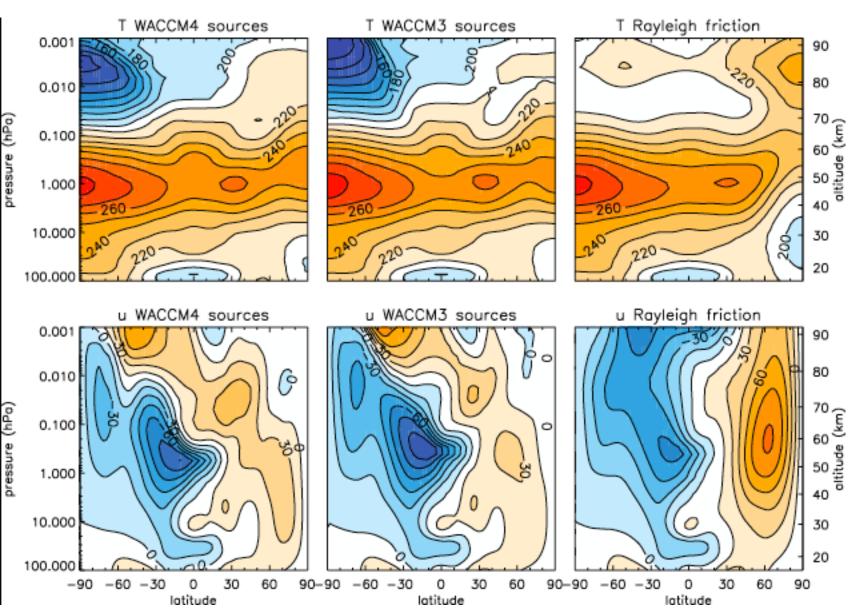
for RMS error, improvement of standard WACCM (green dashed line; nudged to 50 km with 6 hr met data) over free-running is less than a factor of 2

## Why is there RMS error for constraint to "perfect" data?


free running:  $T_n = T_{predicted}$ nudged:  $T_n = (1 - \alpha)T_{predicted} + \alpha T_{met}$ 

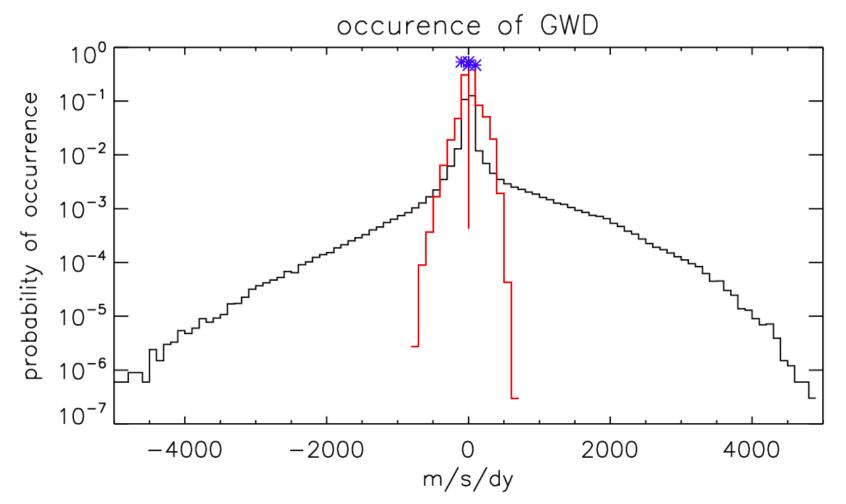
for  $\alpha = 0$ :  $T_n = T_{predicted}$ for  $\alpha = 1$ :  $T_n = T_{met}$   $0 < \alpha < 1$ :  $T_n = (1 - \alpha)T_{n-1} + \alpha T_{met} + (1 - \alpha)[\Delta T_{advection} + \Delta T_{diabatic} + \Delta T_{diffusion}]$  *note different timestep* • inherent lag in nudging process

 formulation of dynamical equations is different


## Where are the errors?

## zonal wind RMS error Pr=0.004 hPa



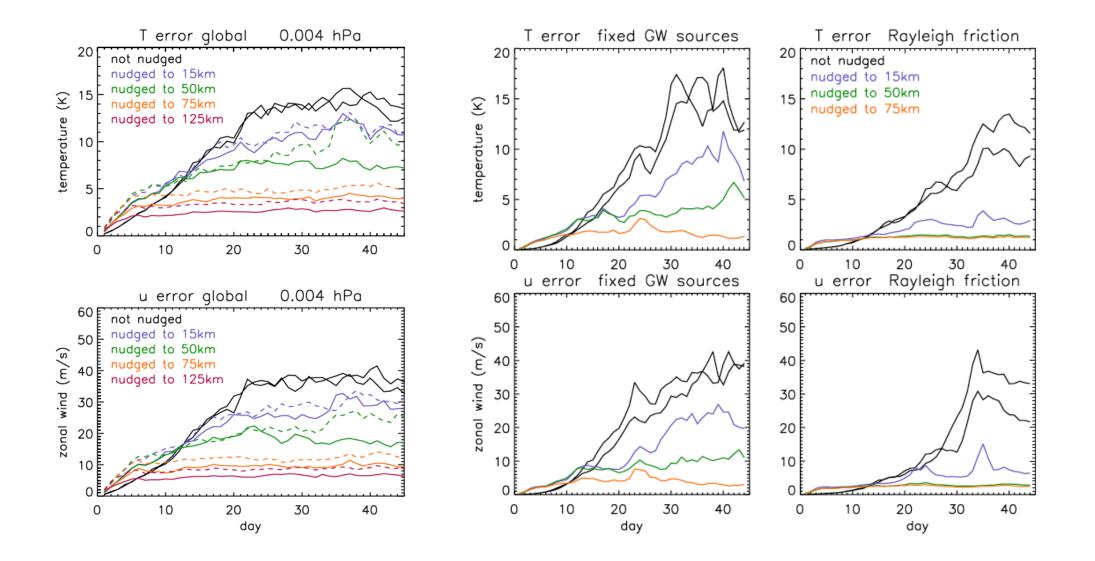

- errors averaged over 10 days
- pattern of error includes large-scale features and localized "hot spots"

## Use different representations of impact of GW on the mesosphere

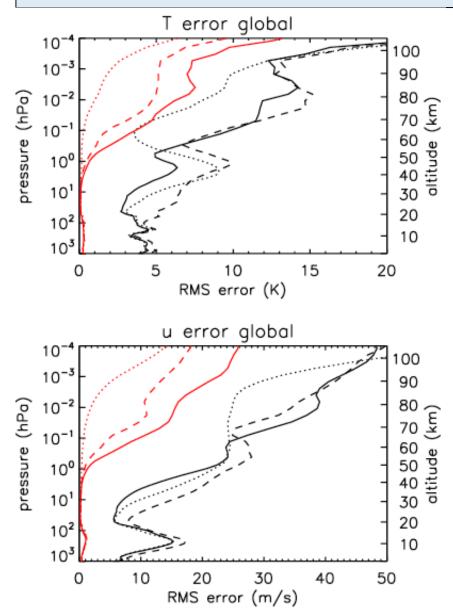


- WACCM4:
  - interactive nonorographic GW sources in troposphere
  - propagation depends on winds
- WACCM3
  - specified GW sources
  - propagation depends on winds
- Rayleigh friction
  - linear damping on u & v

## Net GW drag value at individual gridpoint & timestep




- black: WACCM4 GW parameterization
- red : WACCM3 GW parameterization
- blue: Rayleigh friction


With WACCM4, very large momentum forcing occurs very rarely.

With WACCM3, momentum forcing range is much smaller.

## Compare error growth with different GW drag



## Compare error growth with different GW drag



- black: free-running
- red: nudged to 50 km with hourly met data
- solid: interactive GW sources
- dashed: specified GW sources
- dotted: no GW parameterization

## Conclusions: nudging simulations to assess lower or middle atmosphere control of the dynamical variability of the MLT

- With "perfect" meteorological data, SD-WACCM simulations are closer to the base ("true") atmosphere than free-running simulations.
- Tests with nudged WACCM indicate that the mesosphere is not strongly deterministic.
- The largest source of error is gravity wave drag from the parameterization.
- Model using parameterization without interactive GW sources is more predictable; i.e., with nudging using perfect data, simulation in MLT is close to "true" atmosphere.
- Some initial error growth comes from the formulation used for nudging.

WACCM without interactive GW sources has slower error growth and lower overall error but *this does not mean that this model is more realistic*. GW transport some of the uncertainty (noise) in the troposphere into the mesosphere.

Accurately characterizing error growth is important for data assimilation.