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Key Points:

« The decreasing runoff efficiency trend
from 1986 to 2015 in the Upper Rio
Grande basin is unprecedented in the
last 445 years

= Very low runoff ratios are 2.5-3 times
more likely when temperatures are
above-normal than when they are
below-normal

« The trend arises primarily from natural
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efficiency from a paleoclimate perspective
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e When Pislow and T is high
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Incorporating temperature into streamflow forecasts
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Headwater region of Colorado River and Rio Grande
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Incorporating temperature into streamflow forecasts
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Southwest warming ...

Temperature anomaly (°C)

Mar-Jul temperature forecasted in Mar

L Observations
= CMIP5 (40)

| B NMME (7) + ECMWF (1)

R raw = 0.67
R detrended = 0.48

1960 1970

1980 1990
Time (Year)

2000

2010

y

NCAR

25



Southwest warming ...
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Southwest warming ... and drying
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Southwest drying

1982-2011 water year tren
T ;

(a) '*' o _;_ll ﬁ _ Observations:
% o v I N k‘“\ ‘ :'I <X _ GPCC
S - 1 -20CR

1
-50 -30 -10 10 30 50

Precipitation trend (% 30 years-1)

28



Southwest drying

1982 2011 water year trend
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Possible reasons for US Southwest drying:

e Forced:
A Changes in North American monsoon (pascale et al. 2017)
O ENSO changes (seager et al. 2012)
O Expansion of subtropics (pavis and Rosenlof 2012)
O Weather patterns change (prein et al. 2016)

e Internal:
Q Chaotic atmospheric circulation variability
Q Teleconnections from tropical SSTs variability

(Seager et al. 2005, Schubert et al. 2006, Hoerling et al. 2010, Seager and
Hoerling 2014, Delworth et al. 2015, Hoerling et al. 2016, Seager and Ting 2017)
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Southwest drying
1982 2011 water year trend
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Southwest drying
1982-2011 water year trend
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Southwest drying
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Southwest drying

1982 2011 water year trend Dynamical adjustment:

December
2017

Target month

..
! =
& X ! || _CESM LE (40) \Séh& B
BT T T

50 -30 -10 10 30 50
Precipitation trend (% 30 years—1)

12
g
>
2

Deser et al. (2016, Journal of Climate)

33



Southwest drying
1982 2011 water year trend

CESM LE (40) K

[ [ I I .

-50 -30 -10 10

Precipitation trend (% 30 years—1)

B
@)
>
1A

Dynamical adjustment:

December
2017

December

1964 1988 2001
o
Analogues

Target month

Deser et al. (2016, Journal of Climate)



Southwest drying
1982 2011 water year trend
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Southwest drying
1982 2011 water year trend
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Southwest drying
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Southwest drying
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Southwest drying
1982 2011 water year trend
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Southwest drying
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Southwest drying
1982- 2011 water year trend
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Southwest drying
1982- 2011 water year trend
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Southwest drying

1982- 2011 water year trend
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Next steps:

 How to account for (forced) long-term trends in precipitation and sea level pressure?
- Ruixia, Clara, and Laurent are on it

e Uncertainty in observations?

- Ensemble of observations reflecting measurement uncertainty (Newman et al. 2015)
- “Observational Large Ensemble” (McKinnon et al. 2017) for precipitation and SSTs

* Drought attribution
— 2017-2018 Northern Plains drought?




Thanks!

Snow Water Equivalent as of yesterday (% of average)

.

U.S. Drought Monitor —JANGaRy 20, 2088

-
B

Snow Water Equivalent
Percent NRCS 1981-2010
Median
January 28, 2018, end of day
I = 200%
T AN
[ 150%
125%
[ 100%
[ 75%
. 50%
I 25%
I < 0%
Q N RCS Natural Resources
\ Conservation Service

Created 1-20-2018, 10:18 AM MST




Supplementary Material
1982-2011 yvater year trend

L
et

' Observations

Observations
I dyn. adj.

N
o

Precipitation trend (% 30 years—1)
N
o

1234 56 78 9 11 13
10 12 |

1 CESM TOGAERSSTv4 (10) 5 CESM GOGA (20) 9 CESMLE (40) 11 CMIP5 (40)
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3 GFDL GOGA ctrl1990 (40) 7 CESM Pacemaker (10) 13 CMIP5 piControl (4,000)
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