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Research Questions

1. How does the mean state and internal variability of the midlatitude
jet respond to Arctic Amplification and sea ice loss?

2. How does this response depend on initial jet position?



Mean state response

Ø Deser et al. (2015) ran sea ice loss simulation using the CCSM4.1

Ø We analyzed the zonal mean zonal wind results in the two 
northern ocean basins:
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Mean state response

Ø Anomalous easterlies along the poleward flank of the jet were 
observed in all seasons.

Ø Therefore, we applied an easterly torque2 poleward of the stirring 
latitude3,4 in the barotropic model to simulate this response:
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Jet positional variability response

Ø Define jet positional variability as the standard deviation of daily 
jet position (latitude of maximum winds)

-> The jet positional variability decreases significantly.



Jet positional variability – Rossby waves

u Why does the jet positional variability decrease? 

u Hypothesis: Rossby wave breaking:

• The zonal winds determine where waves propagating out of the 
jet core break or turn (wave propagation width) -> impacts the 
jet position and speed.

• The anomalous easterlies on the poleward flank of the jet leads 
to asymmetrical narrowing of the jet profile, which limits Rossby
wave propagation. 



Jet positional variability – Rossby waves
Ø Rossby waves propagate out from the jet core, both poleward and 

equatorward.

Ø The distance they travel depends on their size (wavenumber, k) 
and speed (phase speed, c). 
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Rossby wave propagation

u Hypothesis:
Arctic Amplification -> easterlies on poleward flank -> 

asymmetrical narrowing of the jet -> limits wave 
propagation -> decreased jet positional variability.



Variance vs Wave Propagation Width
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Conclusions

Ø The variance in jet position is reduced in the forced barotropic
model runs.

Ø Rossby wave theory indicates wavebreaking is occurring closer to 
the jet core on the poleward flank: this is a possible mechanism for 
the decreased latitude range of the jet in the forced model runs.

Ø Our results and conclusions here are also supported by two 
supplemental models of greater complexity:

i. Dry dynamical core GCM5

ii. Fully-coupled GCM (CCSM4)1
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Dependence on latitude
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(b) Changes in refractive index
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(a) Changes in jet properties
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