Rapid expansion of Greenland's low-permeability ice slabs through the 21st Century

Mike MacFerrin,

Horst Machguth, Dirk van As, Babis Charalampidis, Max Stevens, Baptiste Vandecrux, Achim Heilig, Peter Langen, Ruth Mottram, Xavier Fettweis, Michiel van den Broeke, Tad Pfeffer, Mahsa Moussavi, Waleed Abdalati

January 11, 2018

Photo by Dirk van As

Refrozen ice inhibiting runoff in Greenland

< 🖨

Firn not acting as the "buffer" it once was

NATURE CLIMATE CHANGE | LETTER

Greenland meltwater storage in firn limited by nearsurface ice formation

Horst Machguth, Mike MacFerrin, Dirk van As, Jason E. Box, Charalampos Charalampidis, William Colgan, Robert S. Fausto, Harro A. J. Meijer, Ellen Mosley-Thompson & Roderik S. W. van de Wal

Affiliations | Contributions | Corresponding author

Nature Climate Change 6, 390–393 (2016) | doi:10.1038/nclimate2899 Received 07 April 2015 | Accepted 17 November 2015 | Published online 04 January 2016

🖄 PDF 👌 Citation 📲 Reprints 🔍 Rights & permissions 🛛 🖉 Article metrics

Approximately half of Greenland's current annual mass loss is attributed to runoff from surface melt¹. At higher elevations, however, melt does not necessarily equal runoff, because meltwater can refreeze in the porous near-surface snow and firn². Two recent studies suggest that all³ or most^{3, 4} of Greenland's firn pore space is available for meltwater storage, making the firn an important buffer against contribution to sea level rise for decades to come³. Here, we employ *in situ* observations and historical legacy data

The Cryosphere, 10, 1147-1159, 2016 http://www.the-cryosphere.net/10/1147/2016/

Research article

30 May 2016

Extraordinary runoff from the Greenland ice sheet in 2012 amplified by hypsometry and depleted firn retention

Andreas Bech Mikkelsen^{1,2}, Alun Hubbard^{3,4}, Mike MacFerrin⁵, Jason Eric Box⁶, Sam H. Doyle⁴, Andrew Fitzpatrick⁴, Bent Hasholt¹, Hannah L. Bailey⁷, Katrin Lindbäck⁸, and Rickard Pettersson⁸

¹Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark ²Centre for Permafrost (CENPERM), University of Copenhagen, Øster Voldgade 10, Copenhagen, 1350, Denmark ³Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geology, University of Tromsø, Dramsveien 201, 9037 Norway ⁴Centre for Glaciology, Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, SY23 3DB, UK

⁵Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA

⁶Department of Glaciology and Climate, Geological Survey of Denmark and Greenland, Copenhagen, Denmark

⁷Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Periglacial Research Section, 14473 Potsdam, Germany

⁸Department of Earth Sciences, Uppsala Universitet, Villav. 16, 752 36 Uppsala, Sweden

Received: 21 Jul 2015 – Published in The Cryosphere Discuss.: 03 Sep 2015 Revised: 18 Mar 2016 – Accepted: 23 Mar 2016 – Published: 30 May 2016

In Situ and IceBridge Radar

Ice Slabs in Greenland

>69,000 km² of Greenland's firn (~5 % of Greenland)

~15-25% increase in runoff zone size

Enhance runoff in WARM melt years

Uphill Migration of the K-Transect Runoff Line

Machguth, H., MacFerrin, M., van As, D., Box, J. E., Charalampidis, C., Colgan, W., ... van de Wal, R. S. W. (2016). Greenland meltwater storage in firn limited by near-surface ice formation. *Nature Climate Change*, 6(4), 390–393.

Excess Melt

Modified from Pfeffer, Meier & Illangasekare (1991)

- $M = \text{melt} (\text{kg m}^{-2})$
- C = snowfall (kg m⁻²)R = rain (kg m⁻²)
- L = latent heat of fusion of ice (J kg⁻¹)
- = heat capacity of water ($J kg^{-1} \circ C^{-1}$)
- = firn temperature (°C below freezing)
- = density of refrozen ice (kg m^{-3})
- = density of fresh snow (kg m^{-3}) ρ_c

Excess Melt Trends

 \blacktriangleright

Slight increases after 1990

Larger increases after 2000

Accumulation Cutoff

- Perennial Firn Aquifers (PFAs) form in high-accumulation areas
 - Forster, et al. (2014), Koenig, et al. (2013), Miege, et al (2016)
- Ice Slabs only form in **low**-accumulation areas

≤ **572 mm** w.e. / year (~1.8 m snow)

Miege, et al (2016)

How much Excess Melt causes ice slabs?

~266 – 573 mm w.e. / yr for 10 years or more has caused ice slabs to form in Greenland

Mapping with RCMs & Reanalysis

2014 extent 74,000-95,000 km²

Modeling ice slabs with GCMs

Boundary forcing is <u>critical</u>

Bounded by Reanalysis (2013)

Ice Slabs in Antarctica?

Questions?

Slabs growing thicker: KAN-U, 2009-2017

