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Towards a modular framework to quantify
uncertainties in sea level rise and coastal flooding
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Toy example: Antarctic sea level rise

1. Energy balance model emulator of
CMIPS5 global warming

CMIP5 abrupt4xCO2 simulations and EBM fits

Global surface temperature change [K]

adapted from work by
K. Kyzyurova; inspired
by Levermann et al.
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3. Impulse response emulator of Antarctic
land ice disintegration (from SeaRISE)

Antarctic coastal warming [°C]

Amundsen sea response curves
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2. Regression-based downscaling of CMIP5 global
ocean heat uptake to coastal Antarctic warming

Model output
—— Model response functions  ~
Multi-model uncertainty P

Little and Urban (2016)
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4. Probabilistic, multi-model Antarctic
sea level rise projections

— AIF

—— PennState3D
PISM

— SICOPOLIS

— UMISM

0.006

0.004
|

SLR

0.002
|

0.000
|

T
2000
Time (years) 3

Operated by Los Alamos National Security, LLC for NNSA



Adding process fidelity: numerical model ensembles

ROMS ocean model @ 5 km CISM land ice model @ 4 km

(8 km shown here)
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Ocean projections driven by CMIP5 multi-model atmosphere-ocean
a boundary conditions + reanalysis variability
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Uncertainty propagation through reduced models and
response functions, informed by numerical models

1. Energy balance model emulator of
CMIPS5 global warming

CMIP5 abrupt4xCO2 simulations and EBM fits

2. Emulate ROMS basal warming as a function of
CMIP5 ocean warming

Global surface temperature change [K]
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3. Emulate CISM discharge as a function of 4. Probabilistic, multi-model Antarctic
ROMS-derived basal melt rates sea level rise projections
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Features of a modular UQ approach

 Synthesis: response functions or “links” can be based on
* high resolution coupled simulations
* |ow resolution ensembles (e.g. LENS, CMIP)
e standalone component models with prescribed forcing (e.g. CISM)
* idealized process studies (CISM-MOM local shelf studies?)

* global or local observations (can be process-level)

e Commission new simulations designed to probe specific process relationships

 e.g. eddy-driven ocean heat transport to Antarctic ice shelves, and its dependence on
large-scale climate drivers; ensembles of ice simulations under ranges of ocean forcing

* New climate scenarios that no single model produces

* Novel combinations of model structures (e.g. highest SLR results from fastest
warming ocean + fastest melting ice)

e Sample “tail” scenarios outside the range of any model
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Goal: quantitative, transparent, traceable synthesis

* |[PCC synthesis is “gold standard”, but limited

e Hard to interrogate, change assumptions (expert
judgment can be opaque)

e Hard to add new information post-publication
(science is moving target)

e Stakeholders already moving on

e (Can we devise a synthesis process that is more
quantitative, transparent, and traceable (and

“updatable™)?

e Modular UQ decomposes problem into digestible
guestions about about system responses

e What is the range of future global ocean warming?
How does basal melt depend on ocean warming?
How does ice disintegration depend on basal melt?

 Formulate probabilistic, quantitative answers to
each question; insert your own models/data/

judgments

e Allow experts to study, challenge, change
%assumptions; examine impact on conclusions

> Los Alamos
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Observations and questions

e More common than not: science studies don’t influence decision
makers except through large synthesis reports

* Synthesis reports can be opague from a science perspective
e Hard to interrogate and change assumptions
e Hard to add new information post-publication

e (Can we devise a synthesis process that is more quantitative,
transparent, and traceable?
e Would this lead to improved decision making down the line?

e How can direct interaction with decision makers help?

 Science-focused studies improve process understanding, which
should lead to improved projections, but how can we actually do this?

e (Can research be directed to be more useful for decision makers?
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Quantitative synthesis approaches for SLR uncertainties

e Move toward IPCC-style synthesis within a formal statistical framework for
combining different information sources

e (Goals: propagation of quantified uncertainties, transparency, traceability
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Modular approach to SLR uncertainty

e Sea level rise and coastal impacts occur through a causal chain of processes

e Associate a “response function” to each link
 Propagate uncertainty through the network to predictions
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Modular approach to SLR uncertainty

e Sea level rise and coastal impacts occur through a causal chain of processes
e Associate a “response function” to each link

 Propagate uncertainty through the network to predictions
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UQ process decomposition addresses both model
overconfidence and underconfidence

Ocean response Ice response
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Reduced models as multi-model emulators

 Reduced-order energy balance model (EBM) fits to complex Earth

System Models (ESMs):

CsTs =F —\Ts —~v(Tg —Tp)
CpTp =~(Ts — Tp)
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“Model blending”: convert multi-model uncertainty
to parameter uncertainty in a reduced model

* Fit reduced-model parameters to each ESM
e Combine into single multi-model parameter distribution

 Update ESM-based prior with observational data to correct model biases
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Application: climate sensitivity
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Integrated coastal adaptation framework

COASTAL PROCESS SCIENCE

INTEGRATIVE SCIENCE

ADAPTATION SCIENCE

Integrated natural-engineered systems modeling
and risk management

e Ocean-wetland-erosion-salt intrusion dynamics

o Realistic large-scale electricity-water
interdependent network optimization

e Hierarchy of models for decision support
» Extensive sensitivity and uncertainty analysis
e Input sensitivity analysis
e Process sensitivity analysis
* Probabilistic calibration & prediction
» Adaptation sensitivity analysis
e Value-of-information study
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Coastal evolution matters to adaptation

SLR / wave action accelerates erosion

Salt intrusion, storm damage, development can

degrade wetland buffers

Coastline changes increase susceptibility to

storm surge

Salt intrusion contaminates water supplies

Wetland loss model
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shallow parts of channels
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