Future Forest Vulnerability to Drought and Fire in the Western US

Polly Buotte¹, Samuel Levis², Beverly Law¹

¹Oregon State University; ²SLevis Consulting LLC

Overview

- CLM Modifications
- Evaluation against observations
- Application of mods to climate scenarios
- Drought vulnerability metrics
- Fire vulnerability metric

Modifications to CLM 4.5

- 1. Forest-specific Plant Functional Types (13 PFTs)
 - Physiological parameters from the literature
 - PFT distribution from Ruefenacht et al. 2008
- 2. Tree responses to drought
 - PFT-specific stomatal closure
 - Increased leaf shed during soil water stress
- 3. Prognostic fire tuning
 - Reduced population effect on ignitions
 - Adjusted fuel limits
 - Climatological 4-km lightning from NASA database

CLM Evaluation Area Burned 1984-2008

CLM Evaluation Above Ground Carbon

CLM Results

Patterns Vary Among PFTs AGC Example

IPSL climate

MIROC climate

Drought Vulnerability Metrics

- 1. Prolonged Vulnerability: Years with no stem growth
 - 0 1 year = low vulnerability
 - 2 3 years = medium vulnerability

>=4 years = high vulnerability

2. Short-term Vulnerability: Annual NPP = 0
0 years = low vulnerability
1 year = medium vulnerability
>1 year = high vulnerability

Prolonged Vulnerability: Years with No Growth Relative to 1980s

Prolonged Vulnerability from IPSL & MIROC

Short-term Vulnerability from IPSL & MIROC

2020s

2030s

Combined Drought Vulnerability

GCMs Agree

Mixed Agreement

GCMs Agree Both Metrics Low 1990s

GCMs Disagree

2020s

2030s

2040s

Area Burned Through Time

1990s

2010s

2020s

2

0

1

3

4

2040s

 5 km^2

Drought and Fire Vulnerability 2020s to 2040s

Drought Vulnerability

Fire Vulnerability

Always Low Medium

>=1 Decade High

Uncertain

Conclusions

Drought Vulnerability

Fire Vulnerability

Always Low

Medium

>=1 Decade High

Uncertain

- Southwest is most vulnerable to drought
 Intermountain is most vulnerable to fire
- Pacific Northwest is least vulnerable overall

Continuing Work

- Explore ecological characteristics of vulnerable areas
 - Does reduced vulnerability coincide with decreased carbon stocks?
 - Which PFTs are the most vulnerable to each threat?
- Define harvest scenarios targeting vulnerable grid cells
 - Can timber harvest reduce future vulnerability?
- Vulnerability to beetle attack, and economically driven harvest...

We would like to acknowledge high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) and Cheyenne (<u>doi:10.5065/D6RX99HX</u>) provided by NCAR's Computational and Information Systems Laboratory, sponsored by the National Science Foundation.