Rock-N: a potential feedback to the Earth System

Pawlok Dass, Benjamin Z. Houlton, Scott Morford Houlton Lab, UC Davis

Department of LAND, AIR AND WATER RESOURCES University of California, Davis Climate Change + Sestainable Agriculture Environmental Quality + Landscope Processes

Hypothesis

Feedback considered in this study

Feedback not considered in this study

Rock-N weathering - determined by denudation

Which is a function of (see *Houlton et al., in review, Science*):

- Geochemistry lithological map
- Relief digital elevation map
- Tectonic uplift ¹⁰Be (cosmogenic radiation)
- Climate Excess water and Evapotranspiration maps
- Biology not implemented yet

Rock-N & NDEP (atmos. N deposition) global totals

N

	75				NDEFRockl
(r	50	_			
ン の -	25		-		
	0	Whole world	Natural veg	only (2009)	-

NDEP (atm.) vs. Rock-N

For Natural vegetation only, classes masked out: Water, Permanent wetlands, Croplands, Urban and built up, Cropland and natural vegetation mosaic

	NDEP	Rock-N	
Whole world	67.9 TgN	16.2 TgN	
Natural veg (2009)	45.3 TgN	12.2 TgN	

NDEP & Rock-N distribution (current values)

RockN-2000s (gN/m2/yr)

Climate change

RCP 8.5 \rightarrow 8.5 W/m2 (by 2100) \rightarrow 3.7 °C warming (2100) \rightarrow **business as usual**

RCP 2.6 \rightarrow 2.6 W/m2 (by 2100) \rightarrow 1.0 °C warming (2100) \rightarrow aggressive mitigation

Rock-N & NDEP - changes with climate

Fig: Atmospheric N deposition with climate

Fig: Atmospheric N deposition with climate

Climate change and Rock-N (spatial change)

Rock-N change: RCP 2.6

Figs: Change of Rock-N from 1901 to 2101 demonstrated by trend values (in kgN/m²/yr). BLUE: increase in Rock-N; RED: decrease in Rock-N

Gross Primary Productivity (GPP)

- using LPJ-GUESS

GPP - changes with climate

GPP gains only due to Rock-N (ΔGPP)

GPP: difference with observation

"All models are wrong" - George Box

RED: Pixels (areas) where LPJ-GUESS is underperforming with respect to observation

HYPOTHESIS: On addition of Rock-N total **RED** area (model underperformance) will reduce.

GPP: Rock-N decreasing model-observation disagreement

Simulations	FLUXNET	MODIS
LPJ [NDEP + Nfix]	35.15	30.27
LPJ [RockN + NDEP + Nfix]	33.47	28.78
Decrease	1.68	1.49

Table: % of area (vegetated ice free land) where simulated GPP is less than observed GPP

Scope for improvement

1. Compute an upper bound for ΔGPP

2. Permafrost: freeze-thaw weathering

2. Permafrost: freeze-thaw weathering

Formation of Thermokarst Lakes

3. Mycorrhizae: active Rock-N uptake

Thin-section micrograph of feldspar grain *Landwert et al., 2001*

Thin-section micrograph of feldspar grain *Sholl et al., 2008*

Scanning electron micrograph Sholl et al., 2008

Summary

- Nitrogen from rock weathering (Rock-N) accounts for a significant increase in terrestrial productivity.
- The increase in productivity shown here is probably a conservative estimate.
- The high latitudes are probably not as Nitrogen limited as previously thought.
- Increase in productivity due to Rock-N has the potential to act as a negative feedback.

Other Carbon cycle values

Impact of Rock-N: other C-cycle values

Impact of Rock-N: other C-cycle values

Impact of Rock-N: other C-cycle values

