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It's generally important to understand these responses to CO2 and N

because Jrhey have massive feedbacks on the g|obo| carbon budgef.
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Productivity in CLM5

responds

less to Nitrogen

OI’]CI
more to CO?2

than its forbears.

Why?



Why does CLMS respond differently to N and CO,,?

“CLMS5 allows us to increase N fixation by spencling Con N up’cake"
“CLM5 has lower maximum photosynthesis and so responds less to N addition”

“CLM5 occupies a different part of parameter space, it’s nothing to
do with model structure”

“CLMS is awesome and that's why it nails the experimental results”
“Something is subtly different in the photosynthesis scheme in CLM5”

“My favourite parameter ‘x’ has huge impacts on the CO2/N response!”

To really answer these questions, we need to look at the
parameter space and understand the model structure...
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Why does CLMS respond differently to N and CO,,?

“CLMS5 allows us to increase N fixation by spencling Con N up’cake"
“CLM5 has lower maximum photosynthesis and so responds less to N addition”

“CLM5 occupies a different part of parameter space, it’s nothing to
do with model structure”

“CLMS is awesome and that's why it nails the experimental results”
“Something is subtly different in the photosynthesis scheme in CLM5”

“My favourite parameter ‘x’ has huge impacts on the CO2/N response!”

...& it is important to understand how robust this result is, to (help)
assess how much weight we should ascribe to predictions.



Free Air Carbon Enrichment (FACE) at Oak Ridge.
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SINGLE POINT PERTURBED PARAMETER METHODOLOGY.

Perturb parameters (one at a time. x5)
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Parameter

Specific Leaf Area
Leaf C:N ratio
Root:leaf ratio
Stem:leaf ratio
Fraction N fixers
Growth Respiration
Stomatal Slope
Respiration BaseRate
Fraction Ectomyccorrhizl fungi
Flexible CN ratio ‘o’
Flexible CN ratio ‘b’
Flexible CN ratio ‘¢’

N Costs (x6 parameters)

Name

SLATOP

LEAFCN
FROOT_LEAF
STEM_LEAF
FRACFIXERS
GRPERC
MEDLYN_SLOPE
LMR_INTERCEPT
PERECM
FUN_FLEX_CN_A
FUN_FLEX_CN_B
FUN_FLEX_CN_C

N_COSTS

Range Determined By
TRY database

TRY database

Litton et al. (2011)
Litton et al. (2011)
Logical Range (0-1)
Atkin et al. 2018
Medlyn et al. 2011

Atkin et al. 2015
Logical Range (0-1)
Logical Range (0-1)
Sensitive Range (1-400)
Sensitive Range (1-32)

Sensitive range (4 ord.magnitude)

PARAMETER PERTURBATIONS :
FO0CUS ON CARBON AND
NTTROGEN CYCLING
PARAMETERS.



System State: Default

o 0.4

5 gni] 2 Default state has not
(]

5 = got enough leaves!

o o

ety o

ol —

S =

ﬁ o]

™ (%)

=

5 kv,

a B

n o

L =

e =

G

—— slatop
15000 - —— froot:leaf
5 — stem:leaf
o —— ncosts
o g —— fracfixars
10000 A i —#— |eafcn
g —— grperc
—— medlynslope
y —— Imr-intercept
50007 L s #— frac-ectomy-fungi
= k —— cn-flex-a
—#— cn-flex-b
T i —#— cn-flex-c

2| 0 1 q 0 1 i

parameter deviation

2

W & L > =

fd
By
A

Total Veg Carbon {gm 2)
.-""'H”

Leaf Area Index {mzm
—

=
i




CO2 response: Default
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System State: Default
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System State: High Leaf Allocation
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System State: Default
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CO2 response: Higher leaf allocation
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Higher leaf allocation
state has more
conservative response

to CO2

At closed canopy,
changes in leaf area do
not feed back on
productivity as light
inferception is
saturated..



CO2 response: Default
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CO2 response: Higher leaf allocation
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CO2 response: Higher leaf allocation
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.and in CLM5, plants
can buy their way out
of that problem!



CO2 response: Higher leaf allocation
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CO2 response: Higher leaf allocation
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Nitrogen response: Default
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Nitrogen response: Higher leaf allocation
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Nitrogen response: Higher leaf allocation (bigger scale) year 4

& Gross Production)

¢ Leaf Area Index

& Met Production

& Total Veg Carbon

1.3

# N uptake cost

1.07

1.06

—— slatop
—— froot:leaf
stem:leaf
—#— ncosts
—— fracfixers
—s— leaicn
—+— grperc

—— medlynslope

—s— |mr-intercept
frac-ectomy-fungi

—— cn-flex-a

—+— cn-flex-b

—*— cn-flex-c

Closed canopy
reduces

1. Sensitivity to
NDEP

2. Sensitivity of
model response
to parameters.

Model parameters of
greatest impact are:
frac_fixers
Imr_intercept

leafcn

medlyn_slope



Nitrogen response: Higher leaf allocation (bigger sc
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Why does CLMS respond differently to CO,?

“CLMS5 allows us to increase N fixation by spending Con N up’take”
“CLM5 has lower maximum photosynthesis and so responds less to N addition”

“CLM5 occupies a different part of parameter space, it’s nothing to
do with model structure”

“CLMS is awesome and that’'s why it nails the experimental results”

“Something is subtly different in the photosynthesis scheme in CLM5”

“My favourite parameter ‘x” has huge impacts on the global carbon cycle!”



10 Bt CONTINUED ..

1.
2.

Latin Hypercube ensemble to test full spread to most sensitive parameters.

Extend ono|ysis to other ecosystems
Add other drivers (temperature, rainfall, humidity)

Linkages with biophysical parameter investigation (Katie Dagon)



