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Why forecast the Carbon Cycle?

lterative near-term ecological forecasting: Needs,
opportunities, and challenges
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Dominant sources of uncertainty change

Daily Weather Seasonal to ~1 Year Decadal Multi-Decadal to Century
Forecasts Outlooks Predictions Climate Change Projections

_— B

time scale
Initial Value !
Problem :

Forced Boundary

Condition Problem

(Meehl et al., 2009)
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Dominant sources of uncertainty change

Sources of
uncertainty Initial value problem
Initial Initialization Subseasonal to seasonal forecast
condition (2 weeks - 12 months)
1 Earth system model
Climate Decadal prediction
feedbacks (1-30 years)
Model \\ Ecosystem |
uncertainty impacts |
Internal / |
variability i
Earth system projection
Scenarig (30 - 100+ years)
uncertainty Boundary value problem

Bonan et al., Science 359, eaam8328 (2018) 2 February 2018
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Community Land Model set up

Multi-instance CLM4.5 BGC set up for a
location In central New Mexico, USA

PFT fractions of Bare, C4 grass, and
Needleleaf Evergreen — Temperate

e Spun up by cycling 13 years of
ensemble atmospheric reanalysis data
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LAl and Biomass - single instance
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LAl and Biomass — multi-instance
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Uniform Climate Forcing v. Initial Conditions

Uniform Climate Forcing
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Uniform Climate Forcing v. Initial Conditions

Uniform Climate Forcing
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LAI - Error is reduced for 2.5 years
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Biomass — Error is reduced for 7+ years

Uniform Climate Forcing
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LAl and Biomass — observations

12

Monthly, 0.5° Aggregated MODIS
LAI Observations

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, G01023, doi:10.1029/2006JG000168, 2007

Representing a new MODIS consistent land surface in the Community
Land Model (CLM 3.0)

Peter J. Lawrence’ and Thomas N. Chase’
Received 27 January 2006; revised 3 October 2006; accepted 14 November 2006; published 17 March 2007.

Annual, 0.25° Vegetation Optical Depth
Biomass Observations

fature LETTERS
CIImate Change PUBLISHED ONLINE: 30 MARCH 2015 | DOI: 10.1038/NCLIMATE2581

Recent reversal in loss of global
terrestrial biomass

Yi Y. Liu»?*, Albert I. J. M. van Dijk®4, Richard A. M. de Jeu®, Josep G. Canadell®, Matthew F. McCabe’,
Jason P. Evans' and Guojie Wang®
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LAl and Biomass — observations
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CLM-DART Lats
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Ensemble forecast is updated by observations

2005 2006 2007
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Assimilating LAl requires adaptive inflation

16
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50% reduction in LAl RMSE with assimilation
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Assimilating Biomass using adaptive inflation
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Without Using Adaptive Inflation
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70% reduction in Biomass RMSE with assimilation

Without Using Adaptive Inflation
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Observed and unobserved states
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Unobserved State variables are also updated
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Longer-term forecasts are improved as well
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Longer-term forecasts are improved as well
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But interestingly the ensemble splits

LAl Forecast
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Key Points

25

1) Forecasts benefit from accurate initial
conditions

2) Impact persists from years to decades
for different C pools

3) Spun-up model had too high biomass,
and Inaccurate seasonal cycle in LA

4) Large reductions in error during
assimilation and forecast periods

5) Adaptive inflation Is required to
account for large model error
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Global Biomass OSSE
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New observations from ISS

ECOSTRESS GEDI

0CO-3 HISUI

Land surface Height

temperature

Volume

L Leaf area index
Emissivity

Surface
reflectance

Surface
roughness

Spectral

C Water-use efficiency
absorption

Biomass

Species

Solar-induced
fluorescence

Canopy
functional
traits

Live vs dead

Root depth

Canopy water
content

Atmospheric
column CO,

Carbon sink
potential

Nutrients

Disturbance

Carbon
residence
time

Carbon-use
efficiency

Light- and nutrient-use
efficiency

Stavros et al. 2017
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So, what about that model error?

THE MATH IS SUPPOSED

CARBON
YOUR TO FIX THE GUESSING.

FORECASTCYTIENED OUT
TO BE WRONG.

)

IS THAT A SURPRISE,
GIVEN THAT FORECASTS
ARE MOSTLY JUST
GUESSING PLUS MATH?

(

I THINK WEVE
ISOLATED THE
PROBLEM TO

@ScoltAdamsSays

Dilbert.com

12-01-17 @ 2017 Scott Adams, Inc/Dist by Andrews Mchesl
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Sources of Uncertainty?

Climate, ecosystems, and planetary
futures: The challenge to predict life
in Earth svstem models

Bonan et al., Science 359, eaamB328 (2018) 2 February 2018

Sources of

uncertainty Initial value problem

Initial Initialization Subseasonal to seasonal forecast

condition (2 weeks - 12 months)
Earth system model
Climate | Decadal prediction
feedbacks (1- 30 years)
Model

uncertainty

Internal
variability

\\ Ecosystem | |
/ impacts |

Earth system projection
Sc:enarir_:: Scenarios (30 - 100+ years)
uncertainty Boundary value problem
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Ensemble forecast is updated by observations

2005 2006 2007

& RINCAR JA\sgveser



Normal is fitted to the prior/forecast ensemble...

32

LAI assimilation on 12/01/2005
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...we have an observation with an uncertainty...

LAI assimilation on 12/01/2005
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...use EAKF to calculate posterior/analysis

34

LAI assimilation on 12/01/2005
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