Do leaf trait responses to elevated carbon dioxide alter projections of tropical ecosystem composition and fuctioning?

Marlies Kovenock¹, Rosie Fisher², Charles D. Koven³, and Abbigail L.S. Swann^{4,1}

¹ Department of Biology, University of Washington

- ² National Center for Atmospheric Research
- ³ Climate and Ecosystems Division, Lawrence Berkeley National Laboratory
- ⁴ Department of Atmospheric Sciences, University of Washington

Roadmap

- 1. Leaf Traits & CO₂ Responses
- 2. Why alter ecosystem composition & functioning?
- 3. CLM-FATES Experiments
- 4. Next Steps

Take Home Point:

Leaf trait responses to elevated CO₂ could have large impacts on tropical ecosystem composition & functioning!

1. Leaf Mass Per Area

(gC / m² leaf area)

Amount carbon required to build one unit of leaf area.

1. Leaf Mass Per Area

(gC / m² leaf area)

Amount carbon required to build one unit of leaf area.

Leaf Mass per Area (gC/m²) N per Area (gN/m²) ₄

Observations: Tropical trees treated with 2xCO₂

Open top chamber experiments in Panama's National Metropolitan Park treat sappling communities of 9 tropical tree types with $2xCO_2$.

Photo: Klaus Winter Lab website (http://www.stri.si.edu)

Leaf Mass per Area increases with 2xCO₂

2. Leaf Carbon:Nitrogen Ratio

(gC / gN) Measures the amount of nitrogen per leaf <u>mass</u>.

C:N_{leaf} decreases with 2xCO₂

3. Nitrogen per Area

(gN / m² leaf area) Measures the amount of nitrogen per leaf <u>area</u>.

$$N_{area} = Leaf Mass per Area (gC/m2 leaf area) = gN/m2 leaf areaC:Nleaf (gC/gN)$$

3. Nitrogen per Area

(gN / m² leaf area) Measures the amount of nitrogen per leaf <u>area</u>.

- Productive

3. Nitrogen per Area

(gN / m² leaf area) Measures the amount of nitrogen per leaf <u>area</u>.

+ Leaf Mass per Area + Expensive ≈ Productive per Area!

N_{area} generally decreases with 2xCO₂

Leaf trait responses => Large scale climate implications

Kovenock & Swann 2018 (EarthArXiv Preprint) 13

Could leaf trait acclimations to CO₂ alter ecosystem composition?

Tropical leaf trait responses to elevated CO₂

Could leaf trait acclimations to CO₂ alter ecosystem composition?

Higher productivity per area could outcomptete competitors? More leaf area per carbon could shades out competitors?

Methods: CLM-FATES

Fisher et al. Geoscientific Model Development 2015

Slide: Charles Koven 17

CLM5-FATES Simulations

2 Identical Plant Functional Types
 + Leaf trait changes
 informed by observatons of 2xCO₂ responses

Meterological Forcing: Barro Colorado Island, Panama 2003-2016

Photo: Klaus Winter Lab website (http://www.stri.si.edu)

Control Simulations (CLM-FATES)

Competition #1: Expensive Leaf vs. Low Productivity Leaf

Experiment Simulations (CLM-FATES)

Winner: Inexpensive, Low Productivity Leaf

Winner: Very Productive, Expensive Leaf

Winner: Inexpensive, Low Producvitiy Leaf

Could leaf trait and community composition responses to CO₂ alter ecosystem functioning?

Leaf Trait and Community Composition changes alter Ecosystem Functioning

Leaf Trait and Community Composition changes alter Ecosystem Functioning

Leaf Trait and Community Composition changes alter Ecosystem Functioning

Next Steps

Test influence of:

- further sampling the trait response space
- higher temperatures
- initial plant types (e.g. successional stages)
- carbon allocation to leaves
- starting from bare ground vs. existing forest

Thanks!

Take Home Point:

Leaf trait responses to elevated CO₂ could have large impacts on tropical ecosystem composition & functioning!

Marlies Kovenock University of Washington kovenock@uw.edu

National Science Foundation Award AGS-1553715

