The importance of atmospheric feedbacks when considering land surface changes

Marysa Laguë

University of Washington Dept. of Atmospheric Sciences mlague@uw.edu Collaborators: Abigail Swann (UW) Gordon Bonan (NCAR)

The importance of atmospheric feedbacks when considering land surface changes

Surface properties don't have the same impact on the atmosphere everywhere (location matters)

Total climate signal is a combination of **direct** surface responses and atmospheric **feedbacks**

In CLM, many surface properties are emergent & interdependent

In CLM, many surface properties are emergent & interdependent

 \rightarrow Test climate impact of independently changing a single surface property

evaporative resistance roughness (surface) albedo α snow Soil Temperature Bucket hydrology Bucket resistance

Coupled to CESM in place of CLM

Changes in the surface energy budget uncoupled from the atmosphere

Two parts of the total climate response to a surface property change:

Changes in the surface energy budget uncoupled from the atmosphere

Changes in the surface energy budget that include feedbacks from the atmosphere

\downarrow albedo $\longrightarrow \uparrow$ Absorbed Shortwave Energy (E_{in})

(should have the largest impact where there is lots of sun)

\downarrow albedo $\longrightarrow \uparrow$ Absorbed Shortwave Energy (E_{in})

(should have the largest impact where there is lots of sun)

Warming **only** due to changes in the surface energy budget (no atmosphere)

Albedo

Albedo

Isolate the warming signal coming from changes in the atmosphere:

Warming signal coming from changes in the atmosphere:

Take Home Point #1:

Atmospheric feedbacks play a major role in the extratropics in determining the impact of albedo changes on surface temperature

Temperature isn't the whole story...

Albedo

Albedo

Take Home Point #2:

The background climate of a region controls how it responds to a surface change

(e.g. tropics don't warm much when surface darkens, because there is lots of water available to evaporate)

Atmospheric feedbacks for a more realistic pattern of albedo change

Isolate the warming signal coming from changes in the atmosphere:

Albedo

Isolate the warming signal coming from changes in the atmosphere:

Take Home Point #3:

Even with a more realistic *pattern* of albedo change, the warming due to atmospheric feedbacks is much broader in scale than the imposed albedo change

Take Home Point #3:

Even with a more realistic *pattern* of albedo change, the warming due to atmospheric feedbacks is much broader in scale than the imposed albedo change

What are these atmospheric feedbacks?

Atmospheric feedback example:

Cloud loss in response to increased evaporative resistance

Darker surface (↓ albedo) ↓ ↓ Warmer

Atmospheric feedback example:

Cloud loss in response to increased evaporative resistance

Darker surface (↓ albedo) ↓ ↓ Warmer

Harder to evaporate (个 resistance) 个 Warmer

Increased surface resistance (to evaporation) leads to warming

Increased surface resistance (to evaporation) leads to warming Pattern & magnitude change when atmosphere responds

Evaporative Resistance

Increased surface resistance (to evaporation) leads to warming Pattern & magnitude change when atmosphere responds

Evaporative Resistance

Increased surface resistance (to evaporation) leads to warming Pattern & magnitude change when atmosphere responds

Warming signal here is caused by an **atmospheric feedback** in response to the surface change, not **directly** by the surface change itself

Take Home Point #4:

Atmospheric feedbacks (e.g. **cloud** responses) can be very regionally specific

Summary:

The climate implications of a change in surface property are very different, both spatially and in magnitude, if you do/don't account for **atmospheric feedbacks** between the land surface and the atmosphere

Marysa Laguë mlague@uw.edu

Funding from: NSF-1553715 , NSERC-PGSD3-487470-2016 Computing support from CISL for the Cheyenne supercomputer

mlague@uw.edu

Albedo

Isolate the warming signal coming from changes in the atmosphere:

Large-scale precipitation shifts. How much is local (e.g. Amazon) vs circulation-driven (e.g. ITCZ)?

$$LW_{up} = \sigma T^4$$

Large-scale precipitation shifts. How much is local (e.g. Amazon) vs circulation-driven (e.g. ITCZ)?

Albedo sensitivity in Arctic must be remote – no sun. But, more energy is bring transported north.

High lats DJF: covered with snow, and no sun in winter = warming must be coming from albedo change everywhere else

