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The importance of atmospheric feedbacks 
when considering land surface changes

Surface properties don’t 
have the same impact on the 

atmosphere everywhere
(location matters)

Total climate signal is a combination 
of direct surface responses and 

atmospheric feedbacks
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The land & atmosphere interact through the surface energy budget
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The land & atmosphere interact through the surface energy budget
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The land & atmosphere interact through the surface energy budget
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The land & atmosphere interact through the surface energy budget

Albedo

Shortwave
Radiation

Temperature,
H2O, CO2

Longwave
Radiation

Roughness

Sensible
Heat

Evaporation
Transpiration

Latent
HeatHow sensitive is the atmosphere to 

changes in individual surface 

properties?
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In CLM, many surface properties are emergent & interdependent

Vegetation height 
(roughness)

Leaf area & color
(albedo)

Rooting depth 
(available water)

Stomatal resistance, leaf area
(evaporative resistance)

Water use
(available water)
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In CLM, many surface properties are emergent & interdependent

Vegetation height 
(roughness)

Leaf area & color
(albedo)

Rooting depth 
(available water)

Stomatal resistance, leaf area
(evaporative resistance)

Water use
(available water)

How does the atmosphere 
respond to a change in a 

single variable?



mlague@uw.edu 9

Use a simple land model coupled to CESM

→ Test climate impact of independently changing a single surface property

Coupled to CESM 
in place of CLM 

albedo α

roughness

evaporative 
resistance
(surface)

snow

Soil Temperature

Bucket 
resistance

Bucket 
hydrology
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Land-only (forced response)

Data Atmosphere

Land

x
Changes in the surface energy budget 

uncoupled from the atmosphere

(Δ albedo)

Two parts of the total climate response to a surface property change:
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Land-only (forced response)

Data Atmosphere

Land

x
Dynamic Atmosphere

Land

Coupled 
(Forcing + Feedbacks)

Changes in the surface energy budget 
uncoupled from the atmosphere

Changes in the surface energy budget that 
include feedbacks from the atmosphere

(Δ albedo)(Δ albedo)

Two parts of the total climate response to a surface property change:
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Consider a global change in land albedo:

(should have the largest impact where there is lots of sun)

↑ Absorbed Shortwave Energy (Ein)↓ albedo
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Consider a global change in land albedo:

↑ Absorbed Shortwave Energy (Ein)↓ albedo

(should have the largest impact where there is lots of sun)

α = 0.1 α = 0.2 α = 0.3

pine forest grassland dessert

Δα = 0.1 Δα = 0.1



𝛿𝛿 Ts [K] / 𝛿𝛿 0.1 α
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Warming only due to changes in the surface energy budget (no atmosphere)

Albedo

Data 
Atmosphere

Land

x
Land only (“Forcing”)
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Albedo

Pattern of warming changes when atmosphere can respond

Data 
Atmosphere

Land

x
Dynamic 

Atmosphere

Land

𝛿𝛿 Ts [K] / 𝛿𝛿 0.1 α

Land only (“Forcing”)

𝛿𝛿 Ts [K] / 𝛿𝛿 0.1 α

Coupled
(Feedbacks + Forcing)
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Albedo

Data 
Atmosphere

Land

x
Dynamic 

Atmosphere

Land

𝛿𝛿 Ts [K] / 𝛿𝛿 0.1 α

Land only (“Forcing”)
Coupled

(Feedbacks + Forcing)

𝛿𝛿 Ts [K] / 𝛿𝛿 0.1 α

Pattern of warming changes when atmosphere can respond

Possible Feedbacks:
- Local change in humidity or air T
- Change in regional cloud cover
- Global atmospheric circulation



𝛿𝛿 Ts [K] / 𝛿𝛿 0.1 α
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𝛿𝛿 Ts [K] / 𝛿𝛿 0.1 α

Land only 
(no feedbacks)

Coupled
(forcing + feedbacks)

Feedback
(Warming due to 

atmosphere)
= -

Isolate the warming signal coming from changes in the atmosphere:

Albedo
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Albedo

Warming signal coming from changes in the atmosphere:

𝛿𝛿 Ts [K] / 𝛿𝛿 0.1 α

Feedback
(Warming due to atmosphere)

Extra-tropics: lots 
of  warming from 
atmospheric 
feedbacks

Tropics: 
get most of the 
answer from 
the surface 



Atmospheric feedbacks play a major role in the extra-
tropics in determining the impact of albedo changes on 

surface temperature

Take Home Point #1: 
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Albedo

Temperature isn’t the whole story… 

𝛿𝛿 Ts [K] / 𝛿𝛿 0.1 α

Land only (“Forcing”)

𝛿𝛿 Ts [K] / 𝛿𝛿 0.1 α

Temperature response
(Coupled)
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Tropics have small response in Ts, but big change in evaporation

Temperature response
(Coupled)

𝛿𝛿 LH [W/m2] / 𝛿𝛿 0.1 α

Albedo

Evaporation response
(Coupled)

𝛿𝛿 Ts [K] / 𝛿𝛿 0.1 α



The background climate of a region controls how it 
responds to a surface change 

Take Home Point #2: 
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(e.g. tropics don’t warm much when surface darkens, 
because there is lots of water available to evaporate)
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Atmospheric feedbacks for a more realistic pattern of albedo change

Δ Visible Direct Albedo (Summer) x 10
2100 (RCP 8.5) - 1850 (Historical)

From CESM 
CMIP5 simulations

Purple – brighter in future
Brown – darker in future
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Land only 
(no feedbacks)

Δ Ts [K]

Data 
Atmosphere

Land

x
Albedo pattern:
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Land only 
(no feedbacks)

Coupled
(includes feedbacks)

Δ Ts [K] Δ Ts [K]

Data 
Atmosphere

Land

x
Dynamic 

Atmosphere

Land



mlague@uw.edu 26

Land only 
(no feedbacks)

Coupled
(feedbacks)

Feedback
(Extra warming due 

to atmosphere)
= -

Isolate the warming signal coming from changes in the atmosphere:

Albedo
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Isolate the warming signal coming from changes in the atmosphere:

Warming due to 
atmospheric feedbacks

Δ Ts [K]

Extra-tropics: 
strong atmospheric 
feedback

Tropics: 
Weak atmospheric 
feedback 
component



Even with a more realistic pattern of albedo change, 
the warming due to atmospheric feedbacks is much 

broader in scale than the imposed albedo change

Take Home Point #3: 
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Even with a more realistic pattern of albedo change, 
the warming due to atmospheric feedbacks is much 

broader in scale than the imposed albedo change

Take Home Point #3: 
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What are these atmospheric feedbacks?
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Atmospheric feedback example: 
Cloud loss in response to increased evaporative resistance 

↑ Warmer

Darker surface 
(↓ albedo)
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Atmospheric feedback example: 
Cloud loss in response to increased evaporative resistance 

↑ Warmer

Darker surface 
(↓ albedo)

↑ Warmer

Harder to evaporate
(↑ resistance)



Evaporative Resistance

𝛿𝛿 Ts [K] / 𝛿𝛿 50 [s/m] rs

Land only (Forcing)
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Data 
Atmosphere

Land

x

Increased surface resistance (to evaporation) leads to warming



Evaporative Resistance

𝛿𝛿 Ts [K] / 𝛿𝛿 50 [s/m] rs 𝛿𝛿 Ts [K] / 𝛿𝛿 50 [s/m] rs

Land only (Forcing)
Coupled

(Feedbacks + Forcing)

mlague@uw.edu 33

Data 
Atmosphere

Land

x
Dynamic 

Atmosphere

Land

Increased surface resistance (to evaporation) leads to warming
Pattern & magnitude change when atmosphere responds



Evaporative Resistance

𝛿𝛿 Ts [K] / 𝛿𝛿 50 [s/m] rs 𝛿𝛿 Ts [K] / 𝛿𝛿 50 [s/m] rs

Land only (Forcing)
Coupled

(Feedbacks + Forcing)
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Data 
Atmosphere

Land

x
Dynamic 

Atmosphere

Land

Increased surface resistance (to evaporation) leads to warming
Pattern & magnitude change when atmosphere responds



𝛿𝛿 Ts [K] / 𝛿𝛿 50 [s/m] rs 𝛿𝛿 Ts [K] / 𝛿𝛿 50 [s/m] rs

Land only (Forcing)
Coupled

(Feedbacks + Forcing)
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Data 
Atmosphere

Land

x
Dynamic 

Atmosphere

Land

Increased surface resistance (to evaporation) leads to warming
Pattern & magnitude change when atmosphere responds

𝛿𝛿 Ts [K] / 𝛿𝛿 50 [s/m] rs
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↑ resistance
= 

↓ evaporative 
fraction 

𝛿𝛿 Evap Frac / 𝛿𝛿 50 [s/m] rs

𝛿𝛿 Ts [K] / 𝛿𝛿 50 [s/m] rs

Atmospheric feedback responsible for big temperature response to 
changing surface resistance
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↑ resistance
= 

↓ evaporative 
fraction 

𝛿𝛿 Evap Frac / 𝛿𝛿 50 [s/m] rs

𝛿𝛿 Ts [K] / 𝛿𝛿 50 [s/m] rs

↓ evaporative 
fraction

=
↓ low clouds

𝛿𝛿 Low Cloud / 𝛿𝛿 50 [s/m] rs

Atmospheric feedback responsible for big temperature response to 
changing surface resistance
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↑ resistance
= 

↓ evaporative 
fraction 

𝛿𝛿 Evap Frac / 𝛿𝛿 50 [s/m] rs

↓ evaporative 
fraction

=
↓ low clouds

𝛿𝛿 Low Cloud / 𝛿𝛿 50 [s/m] rs

↓ low clouds
=

↑ sun reaching ground

𝛿𝛿 Swnet / 𝛿𝛿 50 [s/m] rs

Atmospheric feedback responsible for big temperature response to 
changing surface resistance
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↑ resistance
= 

↓ evaporative 
fraction 

𝛿𝛿 Evap Frac / 𝛿𝛿 50 [s/m] rs

↓ evaporative 
fraction

=
↓ low clouds

𝛿𝛿 Low Cloud / 𝛿𝛿 50 [s/m] rs

↓ low clouds
=

↑ sun reaching ground

𝛿𝛿 Swnet / 𝛿𝛿 50 [s/m] rs

↑ sun reaching ground
=

↑ surface T

𝛿𝛿 Ts / 𝛿𝛿 50 [s/m] rs

Atmospheric feedback responsible for big temperature response to 
changing surface resistance
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↑ resistance
= 

↓ evaporative 
fraction 

𝛿𝛿 Evap Frac / 𝛿𝛿 50 [s/m] rs

Warming signal here is caused by an atmospheric feedback in response to the 
surface change, not directly by the surface change itself

↓ evaporative 
fraction

=
↓ low clouds

𝛿𝛿 Low Cloud / 𝛿𝛿 50 [s/m] rs

↓ low clouds
=

↑ sun reaching ground

𝛿𝛿 Swnet / 𝛿𝛿 50 [s/m] rs

↑ sun reaching ground
=

↑ surface T

𝛿𝛿 Ts / 𝛿𝛿 50 [s/m] rs

coupledoffline



Atmospheric feedbacks (e.g. cloud responses) can be 
very regionally specific

Take Home Point #4: 
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Summary:

Marysa Laguë
mlague@uw.edu
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The climate implications of a change in surface property are very different, 
both spatially and in magnitude, if you do/don’t account for atmospheric 

feedbacks between the land surface and the atmosphere
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Analysis approach: sensitivity of atmosphere to a change on land

albedo
Get 2.6 K warming 
for every 10% darker 
the surface becomes
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Albedo

Data 
Atmosphere

Land

x
Dynamic 

Atmosphere

Land

𝛿𝛿 Ts [K] / 𝛿𝛿 0.1 α

Land only (“Forcing”)
Coupled

(Feedbacks + Forcing)

𝛿𝛿 T2m [K] / 𝛿𝛿 0.1 α

Tropics have small response in Ts, but big change in evaporation
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Isolate the warming signal coming from changes in the atmosphere:

Warming due to 
atmospheric feedbacks

Δ Ts [K] 𝛿𝛿 Ts [K] / 𝛿𝛿 0.1 α

Globally uniform Δ albedoFuture – historical pattern Δ albedo



Large-scale precipitation shifts. How much is local (e.g. Amazon) vs 
circulation-driven (e.g. ITCZ)?
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Temperature response (Coupled)

𝛿𝛿 T2m [K] / 𝛿𝛿 0.1 α

LWup = σT4

σT4

ΔLW

ΔLW
Big
ΔT

Small
ΔT

T



Large-scale precipitation shifts. How much is local (e.g. Amazon) vs 
circulation-driven (e.g. ITCZ)?
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𝛿𝛿 Rain [mm/day] / 𝛿𝛿 0.1 α 𝛿𝛿 Rain [mm/day] / 𝛿𝛿 50 [s/m] rs
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𝛿𝛿 Ts [K] / 𝛿𝛿 50 [s/m] rs

Feedbacks + Forcing

𝛿𝛿 Ts [K] / 𝛿𝛿 0.1 α

Albedo sensitivity in Arctic must be remote – no sun. But, more energy is bring 
transported north. 
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High lats DJF: covered with snow, and no sun in winter = warming must be 
coming from albedo change everywhere else

𝛿𝛿 Ts [K] / 𝛿𝛿 0.1 α
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