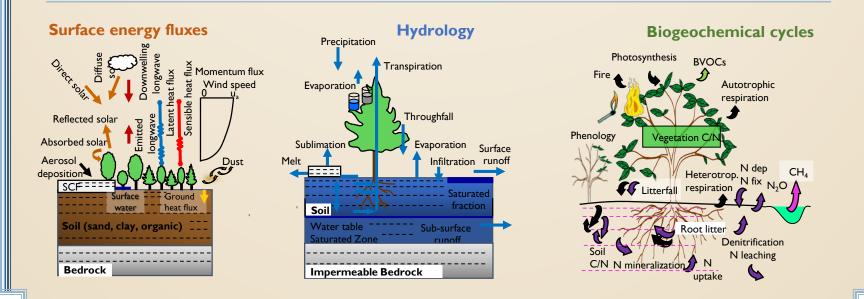


State of CLM Update

David Lawrence and LMWG

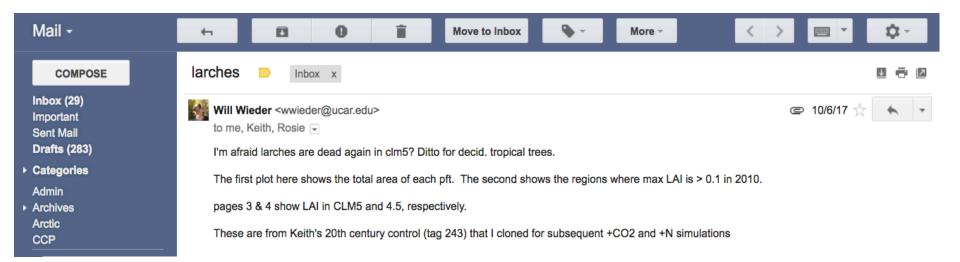
LMWG Andrew Slater Award

The award will be given out annually for the "best student or postdoc performance" at the meeting. We hope that this award will help us all to remember the special way that Drew went about being a scientist and further that it will inspire young scientists to follow in his footsteps. Drew's way included a dedication to deep understanding of his research topics from theoretical, observational (fieldwork) and modelling angles, and also involved a certain irreverence for the status quo.

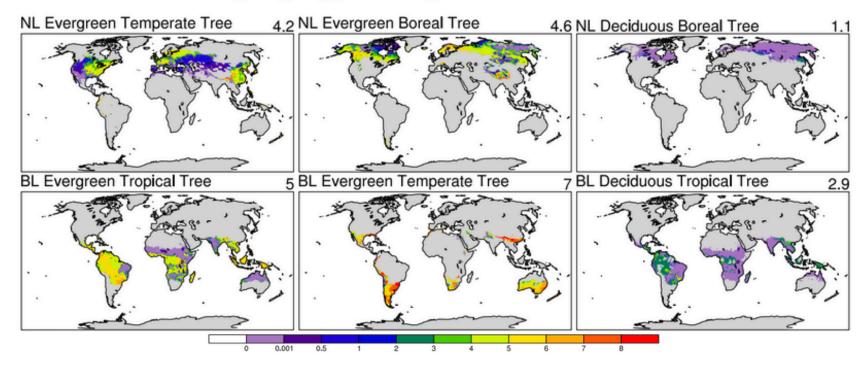


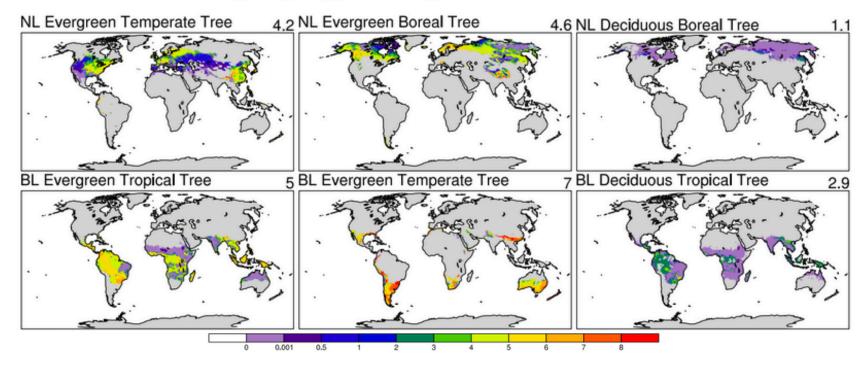
The Land Model Working Group Andrew Slater Award

Is hereby granted to:

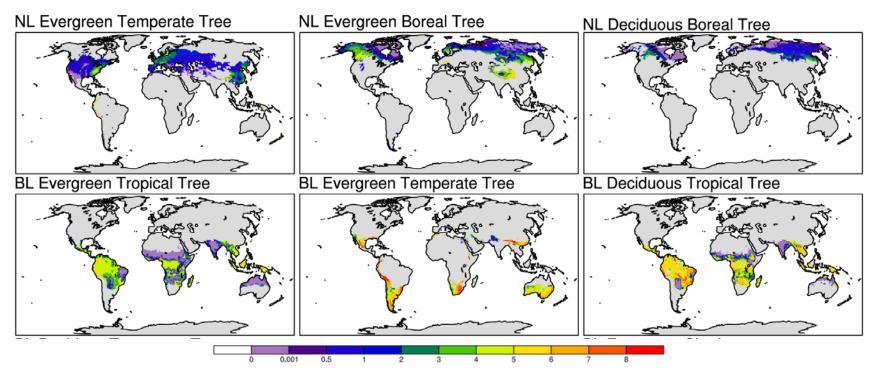

???

for best student or postdoc performance at 2018 LMWG Workshop



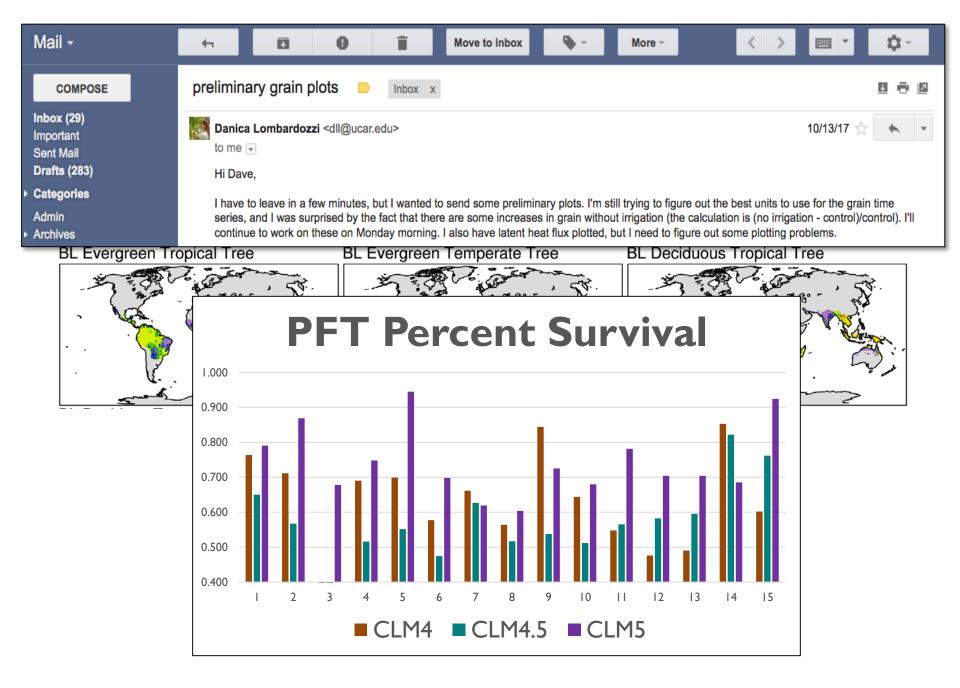

CLM5 Release!

clm50_r243_1deg_GSWP3V2_hist 2010: ANN Max TLAI none



clm50_r243_1deg_GSWP3V2_hist 2010: ANN Max TLAI none

Parameter changes


stem_leaf from 1.5 to 1.0 for BL Deciduous Boreal Tree stem_leaf from 0.12 to 0.24 for BL Deciduous Shrub and BL Deciduous Boreal Shrub ekc_active from 0.36 to 0.036 for BL Deciduous Boreal Tree ekn_active from 0.06 to 0.006 for BL Deciduous Boreal Tree kn_nonmyc from 0.012 to 0.0012 for BL Deciduous Boreal Tree stem_leaf from 2.3 to 1.0 for BL Deciduous Tropical Tree psi50 from -270000 to -340000 for BL Deciduous Tropical Tree (same as C4 grass)

b.e20.BHIST.f09_g17.20thC.215_01_1888: ANN Max TLAI (m² m⁻²)

Parameter changes

stem_leaf from 1.5 to 1.0 for BL Deciduous Boreal Tree stem_leaf from 0.12 to 0.24 for BL Deciduous Shrub and BL Deciduous Boreal Shrub ekc_active from 0.36 to 0.036 for BL Deciduous Boreal Tree ekn_active from 0.06 to 0.006 for BL Deciduous Boreal Tree kn_nonmyc from 0.012 to 0.0012 for BL Deciduous Boreal Tree stem_leaf from 2.3 to 1.0 for BL Deciduous Tropical Tree psi50 from -270000 to -340000 for BL Deciduous Tropical Tree (same as C4 grass)

CLM5 Release!

CLM5 release webpage (www.cesm.ucar.edu/models/cesm2.0/land/)

☆ / CESM Models / CESM 2.0 Release / CLM5 Documentation

CLM5 Documentation

Introduction

CLM5.0 is the latest in a series of land models developed through the CESM project. More information on the CLM project and access to previous released CLM model versions and documentation can be found via the CLM Web Page. Note that CLM4.5 biogeophysics and biogeochemistry can be run from this release code. A new river model (MOSART) is also included. This release is a land-only release. The capability to run CLM5.0 within CESM2.0 will be included in the CESM2.0 release.

The Functionally Assembled Terrestrial Ecosystem Simulator (FATES) is available within the CLM5 release as a research option.

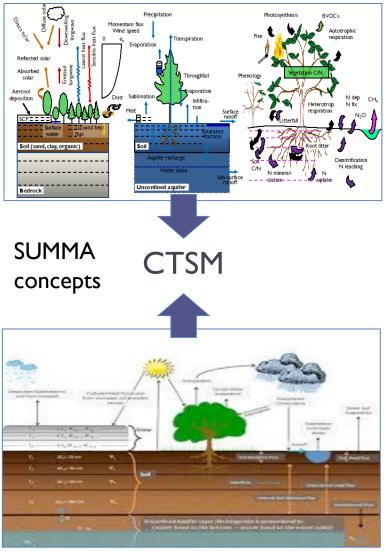
Access

- CLM5.0 is publicly available through the Community Terrestrial System Model (CTSM) git repository
- Download the code by executing the following commands: git clone -b release-clm5.0 https://github.com/ESCOMP/ctsm.git clm5.0 cd clm5.0
 ./manage_externals/checkout_externals

Documentation

- CLM5.0 Technical Description [html]
- What's new in CLM5.0 (text description), (list)
- CLM5.0 User's Guide (In development)
- Quickstart Guide (this is CESM2.0 Quick Start guide; note that same script commands used for CLM land-only)
- CIME documentation (CIME pronounced "SEAM" is the Common Infrastructure for Modeling the Earth provides a UNIX command-line-based interface for configuring, compiling and executing Earth system models including CLM)

Collaborative software development


This repository Search Pull requests Issues Marketplace Ex	xplore + - 🕅 -
ESCOMP / ctsm	• Watch • 5 ★ Star 1 % Fork 1
<> Code () Issues 204 () Pull requests 3 () Projects 0 () Wiki () Insi	g
	Pages 10
Accelerate progress by enabling scientists to	
engage in end-to-end development	• Development guides
• Cadina (fallow oo dina awidalinaa)	 Recommended git setup
 Coding (follow coding guidelines) Seignes testing and support is a 	 Coding guidelines
Science testing and evaluation	 System testing guide
Documentation (update Technical Descr.)	 Development workflow (work in progress)
Software / unit testing	• Testing and PR
	high-level workflow
	 Testing and PR complex workflows
	Meetings
	 2018 meeting notes
	 2017 meeting notes
	 2016 meeting notes

The Community Terrestrial Systems Model

a model for research and prediction in climate, weather, water, and ecosystems

CLM (CGD)

Noah-MP, WRF-Hydro (RAL)

Unify land modeling across NCAR

- More efficient use of NCAR and community resources
- Consistent with NCAR emphasis on unified modeling
- Extend NCAR leadership in community modeling
- Accelerate advances
- Increase flexibility and robustness of process representation, spatial disaggregation, and numerical solution (SUMMA concepts, modularization)
- Enable more hypothesis-driven science
- Integrate and expand land modeling research and development community
- Expand funding opportunities?

CLM5 release webpage (www.cesm.ucar.edu/models/cesm2.0/land/)

ℰ / CESM Models / CESM 2.0 Release / CLM5 Documentation

CLM5 Documentation

Introduction

CLM5.0 is the latest in a series of land models developed through the CESM project. More information on the CLM project and access to previous released CLM model versions and documentation can be found via the CLM Web Page. Note that CLM4.5 biogeophysics and biogeochemistry can be run from this release code. A new river model (MOSART) is also included. This release is a land-only release. The capability to run CLM5.0 within CESM2.0 will be included in the CESM2.0 release.

The Functionally Assembled Terrestrial Ecosystem Simulator (FATES) is available within the CLM5 release as a research option.

Access

- CLM5.0 is publicly available through the Community Terrestrial System Model (CTSM) git repository
- Download the code by executing the following commands: git clone -b release-clm5.0 https://github.com/ESCOMP/ctsm.git clm5.0 cd clm5.0
 ./manage_externals/checkout_externals

Documentation

- CLM5.0 Technical Description [html]
- What's new in CLM5.0 (text description), (list)
- CLM5.0 User's Guide (In development)
- Quickstart Guide (this is CESM2.0 Quick Start guide; note that same script commands used for CLM land-only)
- CIME documentation (CIME pronounced "SEAM" is the Common Infrastructure for Modeling the Earth provides a UNIX command-line-based interface for configuring, compiling and executing Earth system models including CLM)

clmdoc documentation » 2. CLM Technical ... »

Table Of Contents

2.1. Introduction

- 2.1.1. Model History
 - 2.1.1.1. Inception of CLM
 - 2.1.1.2. CLM2
 - 2.1.1.3. CLM3
 - 2.1.1.4. CLM3.5
 - 2.1.1.5. CLM4
 - 2.1.1.6. CLM4.5
 - 2.1.1.7. CLM5.0
- 2.1.2. Biogeophysical and Biogeochemical Processes

Previous topic

2. CLM Technical Note

Next topic

2.2. Surface Characterization, Vertical Discretization, and Model Input Requirements

This Page

Show Source

Go

Quick search

February 2018

Technical Description of version 5.0 of the Community Land Model (CLM)

Coordinating Lead Authors

David Lawrence, Rosie Fisher, Charles Koven, Keith Oleson, Sean Swenson

Lead Authors

Ben Andre, Gordon Bonan, Bardan Ghimire, Leo van Kampenhout, Daniel Kennedy, Erik Kluzek, Ryan Knox, Peter Lawrence, Fang Li, Hongyi Li, Danica Lombardozzi, Yaqiong Lu, Justin Perket, William Riley, William Sacks, Mingjie Shi, Will Wieder, Chonggang Xu

Contributing Authors

Ashehad Ali, Andrew Badger, Gautam Bisht, Patrick Broxton, Michael Brunke, Jonathon Buzan, Martyn Clark, Tony Craig, Kyla Dahlin, Beth Drewniak, Louisa Emmons, Josh Fisher, Mark Flanner, Pierre Gentine, Jan Lenaerts, Sam Levis, L. Ruby Leung, William Lipscomb, Jon Pelletier, Daniel M. Ricciuto, Ben Sanderson, Jacqueline Shuman, Andrew Slater, Zachary Subin, Jinyun Tang, Ahmed Tawfik, Quinn Thomas, Simone Tilmes, Mariana Vertenstein, Francis Vitt, Xubin Zeng

The National Center for Atmospheric Research (NCAR) is operated by the nonprofit University Corporation for Atmospheric Research (UCAR) under the sponsorship of the National Science Foundation. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

National Center for Atmospheric Research P. O. Box 3000, Boulder, Colorado 80307-300

LIST OF FIGURES

- Figure 2.1 Land biogeophysical, biogeochemical, and landscape processes simulated by CLM (adapted from Lawrence et al. (2011) for CLM5.0).
- Figure 2.2 Configuration of the CLM subgrid hierarchy.
- Figure 2.3 Schematic diagram of (a) direct beam radiation, (b) diffuse solar radiation, and (c) longwave radiation absorbed, transmitted, and reflected by vegetation and ground.

CLM5 release webpage (www.cesm.ucar.edu/models/cesm2.0/land/)

ℰ / CESM Models / CESM 2.0 Release / CLM5 Documentation

CLM5 Documentation

Introduction

CLM5.0 is the latest in a series of land models developed through the CESM project. More information on the CLM project and access to previous released CLM model versions and documentation can be found via the CLM Web Page. Note that CLM4.5 biogeophysics and biogeochemistry can be run from this release code. A new river model (MOSART) is also included. This release is a land-only release. The capability to run CLM5.0 within CESM2.0 will be included in the CESM2.0 release.

The Functionally Assembled Terrestrial Ecosystem Simulator (FATES) is available within the CLM5 release as a research option.

Access

- CLM5.0 is publicly available through the Community Terrestrial System Model (CTSM) git repository
- Download the code by executing the following commands: git clone -b release-clm5.0 https://github.com/ESCOMP/ctsm.git clm5.0 cd clm5.0
 ./manage_externals/checkout_externals

Documentation

- CLM5.0 Technical Description [html]
- What's new in CLM5.0 (text description), (list)

- CLM5.0 User's Guide (In development)
- Quickstart Guide (this is CESM2.0 Quick Start guide; note that same script commands used for CLM land-only)
- CIME documentation (CIME pronounced "SEAM" is the Common Infrastructure for Modeling the Earth provides a UNIX command-line-based interface for configuring, compiling and executing Earth system models including CLM)

What's new in CLM5 since CLM4.5

(Deservices and and

Hydrology:	dry surface layer, spatially variable soil depth (0.4 to 8.5m) max depth, revised GW and canopy interception, adaptive time-stepping, increased soil layer resolution					
Snow:	canopy snow, wind and T effects on snow dens., firn model (12 layers), glacier MEC					
Rivers:	MOSART (hillslope \rightarrow tributary \rightarrow main channel)					
Nitrogen:	New C-N coupling (flexible leaf C:N ratio, leaf N optimization, C cost for N)					
Vegetation:	plant hydraulics and hydraulic redist, deep rooted tropical trees, Medlyn stomatal cond, Ecosystem Demography (FATES), prognostic roots, ozone damage					
Fire:	updates, trace gas and aerosol emissions					
Crops:	global crop model with transient irrigation and fertilization (8 crop types), grain product pool, revised irrigation scheme					
Carbon:	revisions to carbon allocation and soil carbon decomposition					
Land cover/use:	dynamic landunits, updated PFT-distribution, wood harvest by mass					
lsotopes:	carbon and isotope enabled					
CLM5 default	t configuration					

CLM5 optional feature

Component Model Namelist Definitions for CLM4.5/5.0

Component tag: clm4_5_18_r274 CESM Version: CESM2.0 HTML created on: 2018-02-02

This page contains the complete list of CLM4.5/5.0 namelist variables available. They are grouped by categories designed to aid browsing. Clicking on the name of a variable will display additional descriptive information. Click on the "Show Details" button and then cntl+F key to search for specific strings in this file.

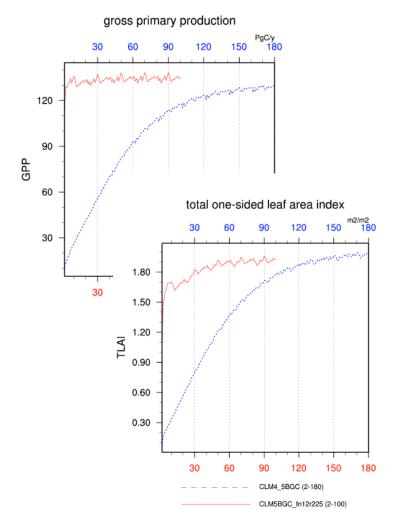
Show Details Hide Details

Category: bgc

Multiplier for nitrate concentration for max denitrification rates (ONLY us	
Exponent power for nitrate concentrationfor max denitrification rates (ONLY	
Multiplier for heterotrophic respiration for max denitrification rates (ONL	
Exponent power for heterotrophic respiration for max denitrification rates	
Maximum nitrification rate constant (1/s) (ONLY used if use_nitrif_denitrif	
Use parameters for decomposition from the CENTURY Carbon model Requires the	
CLM Biogeochemistry mode : Carbon Nitrogen model (CN) (or CLM45BGC if phys=	
CLM Biogeochemistry mode : Carbon Nitrogen with Dynamic Global Vegetation M	
	Exponent power for nitrate concentrationfor max denitrification rates (ONLY Multiplier for heterotrophic respiration for max denitrification rates (ONL Exponent power for heterotrophic respiration for max denitrification rates Maximum nitrification rate constant (1/s) (ONLY used if use_nitrif_denitrif Use parameters for decomposition from the CENTURY Carbon model Requires the CLM Biogeochemistry mode : Carbon Nitrogen model (CN) (or CLM45BGC if phys=

Land-only simulations for CLM5 release, documentation papers, and CMIP6

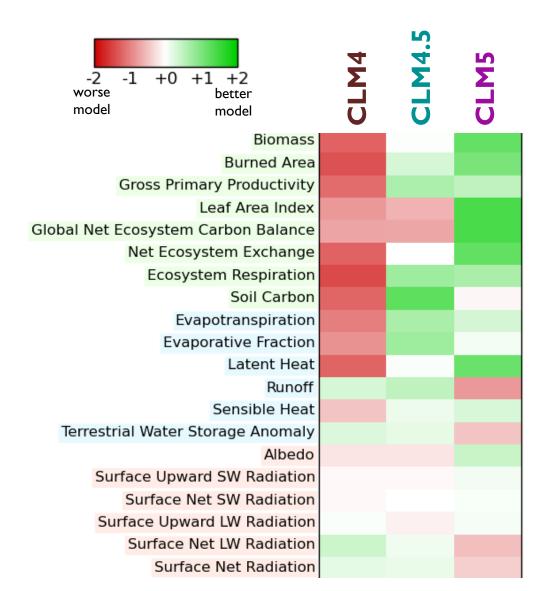
	CLM4					CLN	14.5		CLM5			
Forcing	SP	BGC	+N, +CO ₂	no LULC C	SP	BGC	+N, +CO ₂	no LULC C	SP	BGC crop	+N, +CO ₂	no LULC C
GSWP3 vl	✔ 🖸	✔ ⊡ *	•□	•□	•□	✔ ⊡ *	•□	•□	✔ 🖸	✔ ⊡ *	•□	•□
CRUNCEP v7		•□				•□			•□	✔ 👍		•□
WATCH/ WFDEI									✔ 🗗 F	✓ □*		


✓ ☐ Historical simulation (1850-2014,^W 1850-2001,^{WF} 1979-2014)

- ***** Projection period simulations (RCP8.5 2015-2300)
- ^o Daily and hourly output

- Online initial condition interpolation (use_init_interp = .true.)
- Much faster accelerated spin-up (biogeophysical land state comes into equil quickly)
 - CLM4, 2000+ years; CLM5, ~800 years
 - Lots of namelist control
 - Ind_in: ~240 lines CLM5; 18 lines CLM4
- Anomaly forcing
 - Force CLM with climate anomalies
- Dynamic landunits

Configuration	Cost (pe-hrs/yr)
CLM4.0 CN	20
CLM4.5 BGC	80 (4x)
CLM5.0 BGC	120 (6x)
CLM5.0 BGC-crop	175 (8x)
CLM5.0 no BGC	50

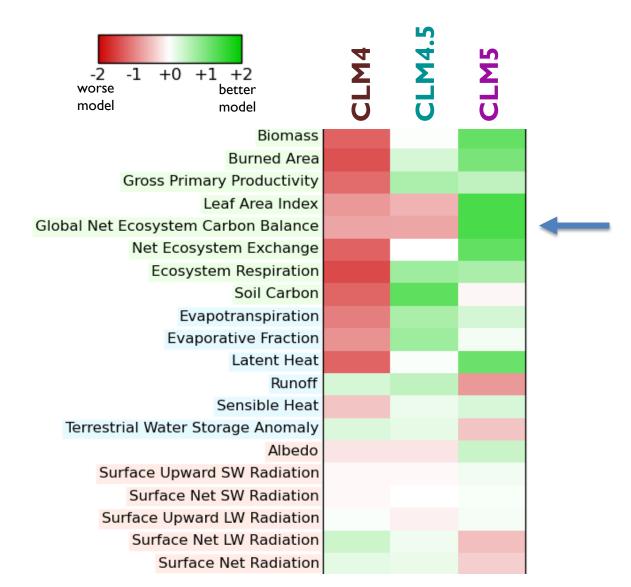

CLM4.0, CLM4.5, AND CLM5.0 0.9'X1.25' "STAND-ALONE" (I COMPONENT SET) ILAMB DIAGNOSTICS

ILAMB (International Land Atmosphere Model Benchmarking) project

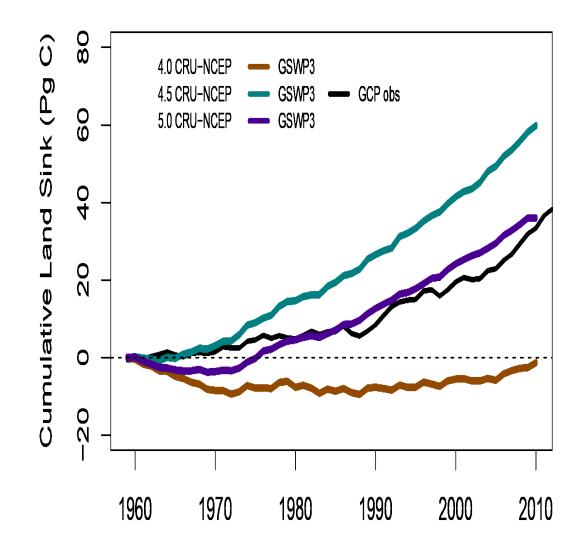
CESM2.0 Home Page

Models and (Forcing Datasets)	Regions	Diagnostics
CLM5SP (GSWP3,CRUNCEP,WFDEI)	Global Only	Plots
CLM5BGC (GSWP3,CRUNCEP,WATCH)	Global Only	Plots
CLM4BGC, CLM4.5BGC, CLM5BGC (GSWP3)	All	Plots
CLM4BGC,CLM4.5BGC,CLM5BGC (GSWP3,CRUNCEP); CLM4SP,CLM4.5SP,CLM5SP (GSWP3)	Global Only	Plots

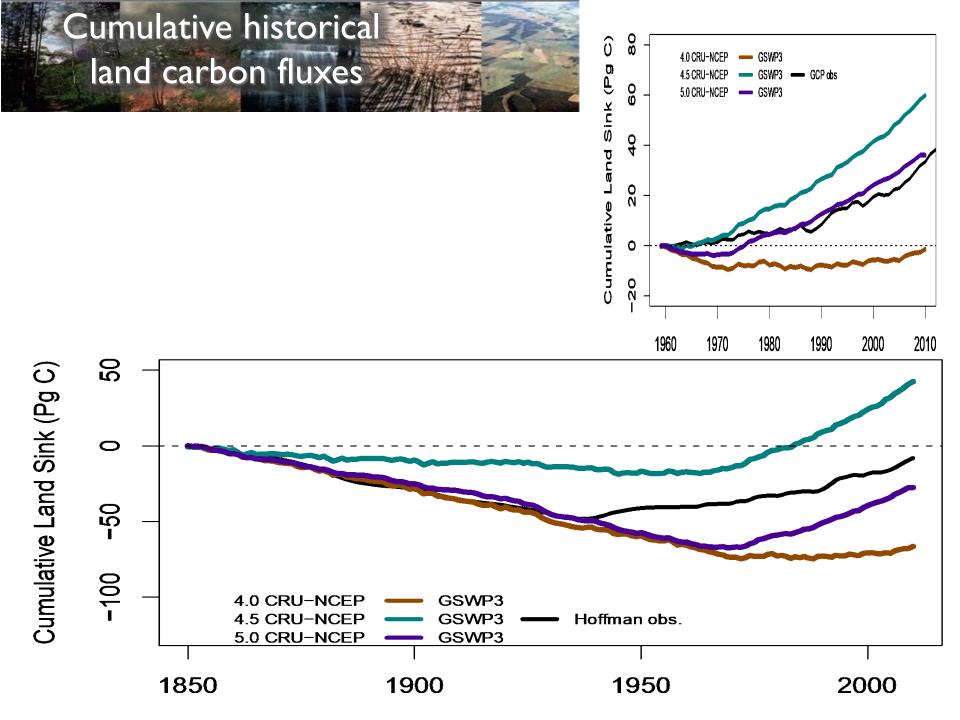
CLM land-only forced with GSWP3 prognostic vegetation and carbon configuration


- For majority of variables, progression in simulation quality from CLM4 to CLM5
- Why?
 - Improvements in mechanistic treatment
 of processes (e.g., hydrology,
 biogeochemistry, land use)
 - But, many more moving parts

ILAMB Runoff Metrics Table


				\$	•				(ibution cannual ove
		200	13	Bias Int	8		.0		ibution
	004	unload Dat Period	- M	Bias Im		Bias	Score Spa	tial Die	rannu ove
Benchmark	E	0.825							
CLM4.0_CRUNCEP	E	0.525		-0.300		0.68	0.68	0.69	0.68
CLM4.0_GSWP3	[-]	0.769		-0.0568		0.81	0.93	0.68	0.81
CLM4.0SP_GSWP3	[-]	0.861		0.0353		0.81	0.97	0.64	0.81
CLM4.5_CRUNCEP	[-]	0.581		-0.244		0.72	0.87	0.67	0.75
CLM4.5_GSWP3	[-]	0.812		-0.0137		0.80	0.97	0.66	0.81
CLM4.5SP_GSWP3	[-]	0.836		0.0108		0.82	0.98	0.66	0.82
CLM5.0_CRUNCEP	[-]	0.581		-0.245		0.69	0.80	0.58	0.69
CLM5.0_GSWP3	[-]	0.913		0.0875		0.79	0.97	0.59	0.79
CLM5.0SP_GSWP3	Ð	0.888		0.0627		0.81	0.97	0.61	0.79

CLM land-only forced with GSWP3


prognostic vegetation and carbon configuration

Cumulative historical land carbon fluxes

Conservation and

Functional Relationships: Summary diagram

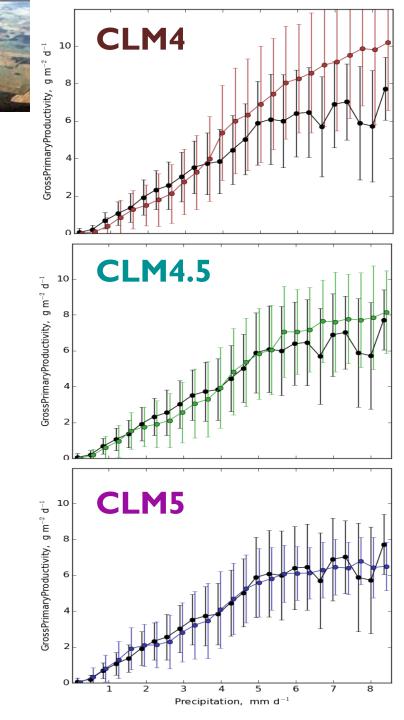
BurnedArea/Precipitation

CLM4 CLM4.5

+0

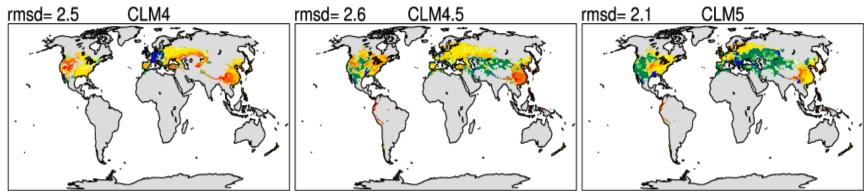
Relative Score

-1

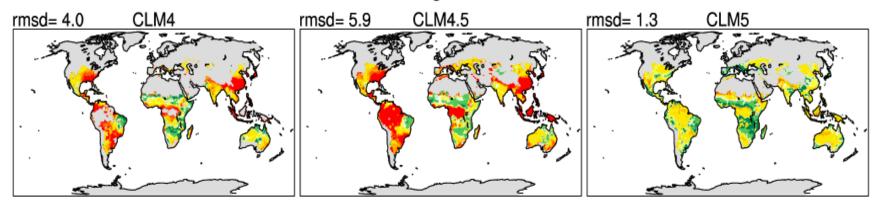

-2

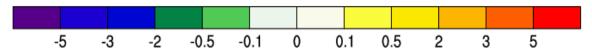
+1

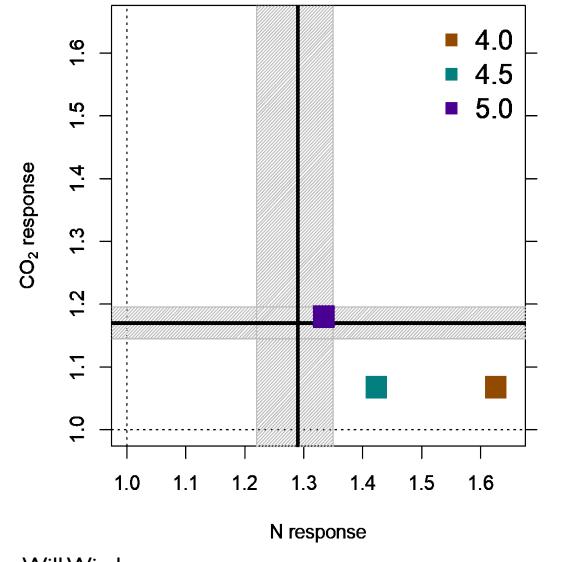
+2


CLM5

BurnedArea/SurfaceAirTemperature GrossPrimaryProductivity/Evapotranspiration GrossPrimaryProductivity/Precipitation GrossPrimaryProductivity/SurfaceDownwardSWRadiation GrossPrimaryProductivity/SurfaceNetSWRadiation GrossPrimaryProductivity/SurfaceAirTemperature LeafAreaIndex/Precipitation Evapotranspiration/Precipitation

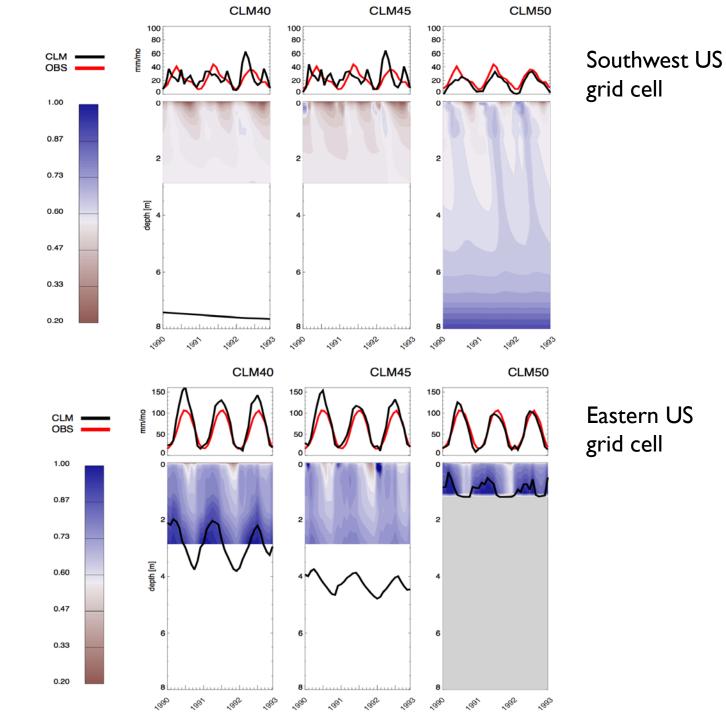

Future ILAMB diagnostics:Leaf Area Index (LAI) bias by Plant Functional Type


Reduced bias in 12 out of 15 PFTs


NL Evergreen Temperate Tree

C4 grass

Response to CO₂ doubling and N fertilization (preliminary)


- +5 gN/m² globally
- +200 ppm CO²

Future ILAMB metric:

- N fertilization obs (ANPP) from Lebauer & Treseder, 2008
- CO₂ obs from Ainsworth and Long, 2005

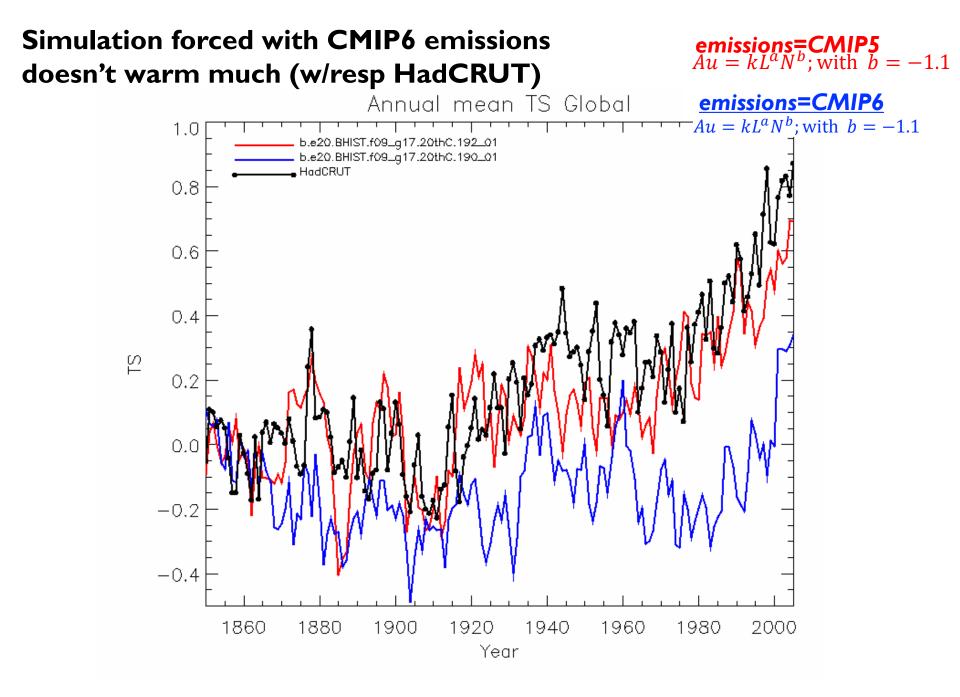
Figure from Will Wieder

Soil moisture and ET

CLM5 documentation papers

for CESM2 special issue

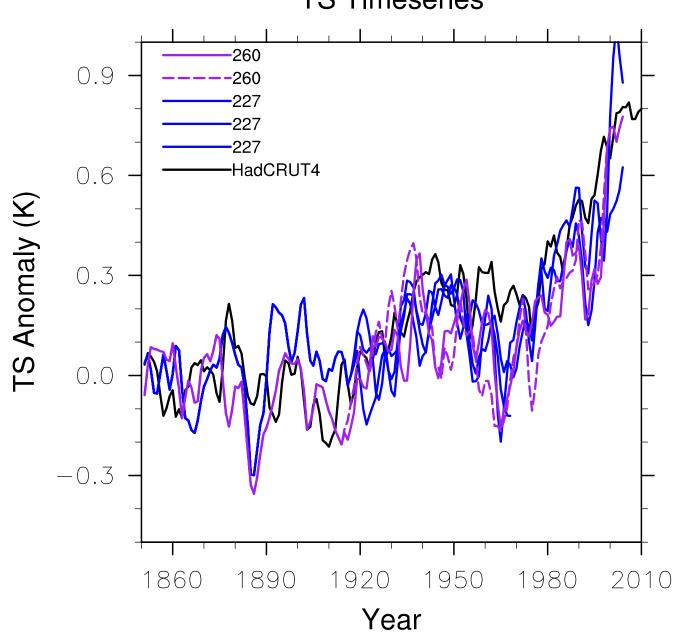
CLM5 model overview and technical description	Lawrence et al.	JAMES
CLM5 C-N coupling	Fisher et al.	JGR-Biogeosciences
N and CO ₂ fertilization	Wieder et al.	GBC
Plant Hydraulic Stress	Kennedy et al.	JAMES
Land use and land cover change	Lawrence et al.	JAMES
CLM5 Crop	Lombardozzi, Lu et al.	JGR-Biogeosciences
Stomatal conductance	Franks et al.	JGR-Biogeosciences
Urban model	Oleson et al.	JAMES


CLM5 documentation papers

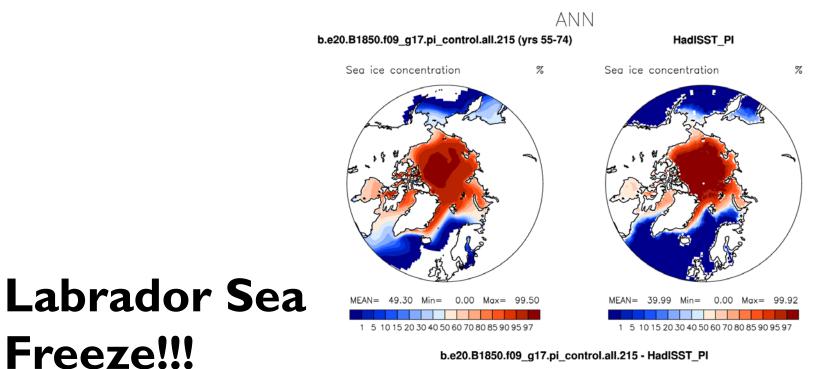
for CESM2 special issue

CLM5 model overview and technical description	Lawrence et al.	JAMES
CLM5 C-N coupling	Fisher et al.	JGR-Biogeosciences
N and CO ₂ fertilization	Wieder et al.	GBC
Plant Hydraulic Stress	Kennedy et al.	JAMES
Land use and land cover change	Lawrence et al.	JAMES
CLM5 Crop	Lombardozzi, Lu et al.	JGR-Biogeosciences
Stomatal conductance	Franks et al.	JGR-Biogeosciences
Urban model	Oleson et al.	JAMES

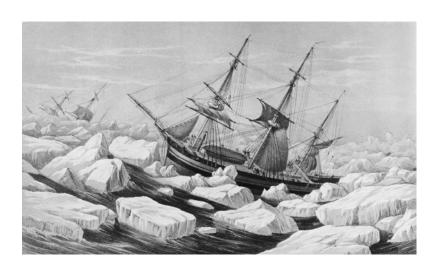
CESM2 update where CESM2 stood in Sept 2017

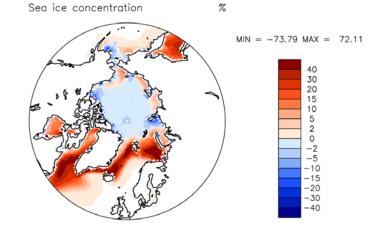

 Good 20thC simulation with CMIP5 emissions, not so much with CMIP6

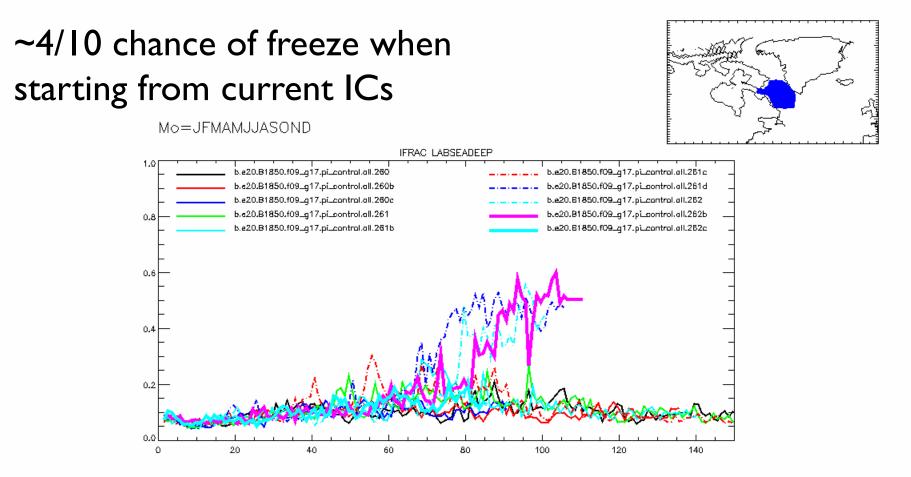
Further development since September


- Then, uncovered bug in microphysics
 - Bug led to enhanced rain re-evaporation
 - Fixing bug degraded mean precip, MJO and ENSO
- Increased convective rain re-evaporation to compensate for bugfix (leads to warmer model overall)
- Decrease lifetime of SO2

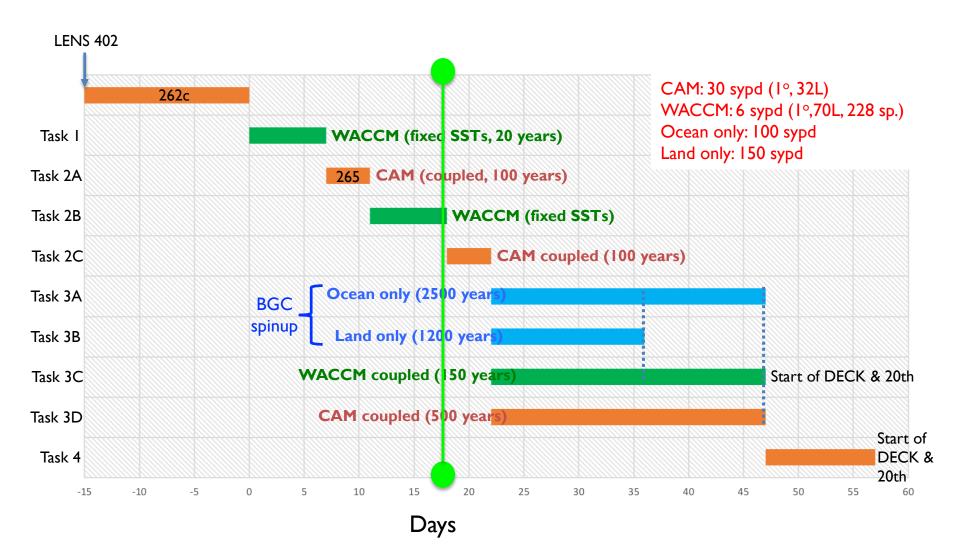
Thinner stratus help with 20th C simulation:



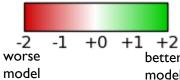

TS Timeseries


Sea-ice concentrations

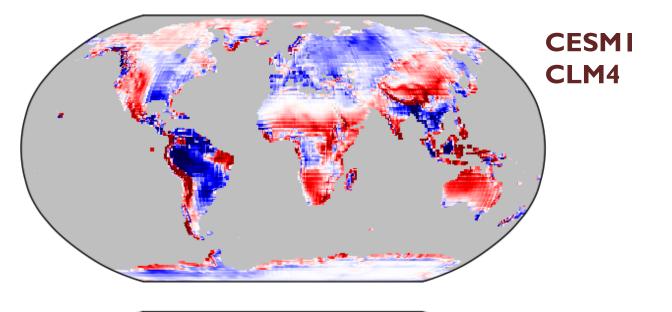
b.e20.B1850.f09_g17.pi_control.all.215 - HadISST_PI

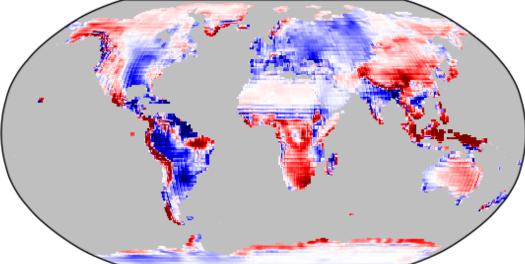


Lab sea freezing is a problem because deep water formation is interrupted


Tasks for PI control

39

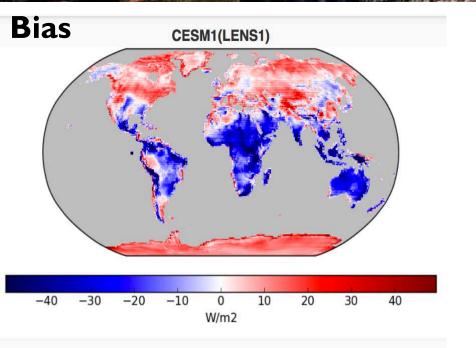


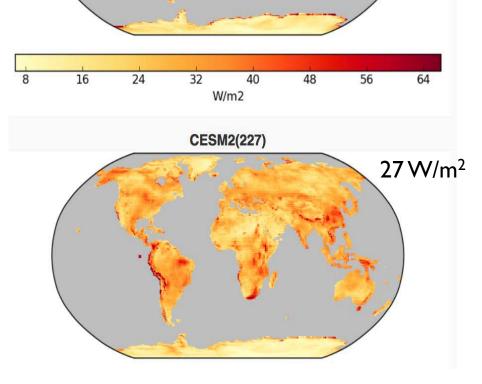

Preliminary land simulations assessment in fully coupled CESM2

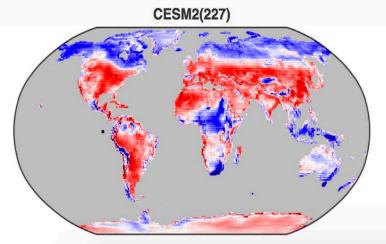
+1 +2 better	Biomass		
model	Burned Area		
	Gross Primary Productivity		
	Leaf Area Index		
Global Net Ecosystem Carbon Balance			
Net Ecosystem Exchange			
	Ecosystem Respiration		
	Soil Carbon		
	Evapotranspiration		
	Evaporative Fraction		
	Latent Heat		
	Runoff		
	Sensible Heat		
Terrestrial Water Storage Anomaly			
Albedo			
	Surface Upward SW Radiation		
	Surface Net SW Radiation		
	Surface Upward LW Radiation		
	Surface Net LW Radiation		
Surface Net Radiation			
Surface Air Temperature			
Precipitation			
	Surface Relative Humidity		
Surface Downward SW Radiation			
Surface Downward LW Radiation			

Precipitation biases (GPCP2)

CESM2 (227) CLM5

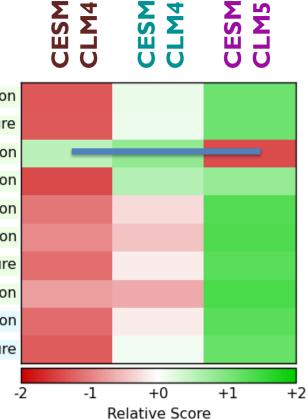

Solar radiation biases and RMSE (CERES)

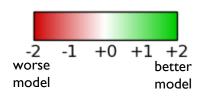

Changes and


CESM1(LENS1)

RMSE

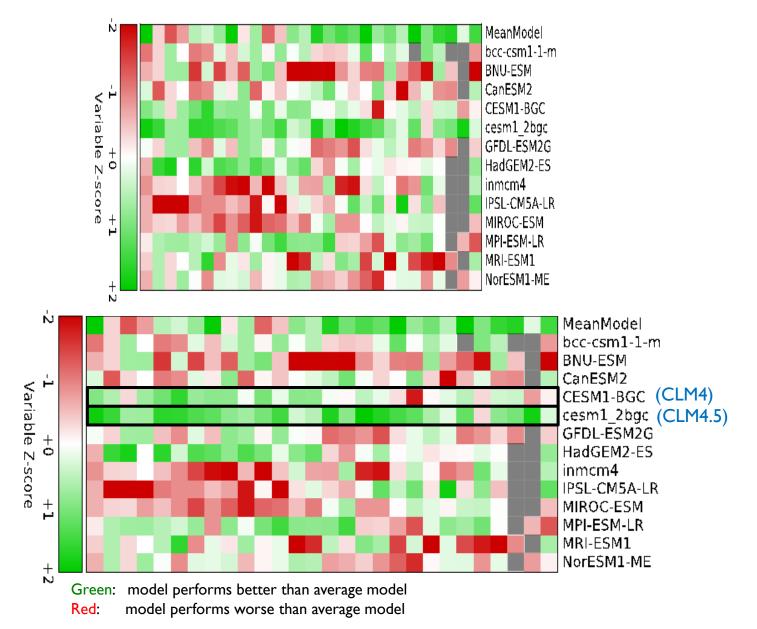
 $32 W/m^2$

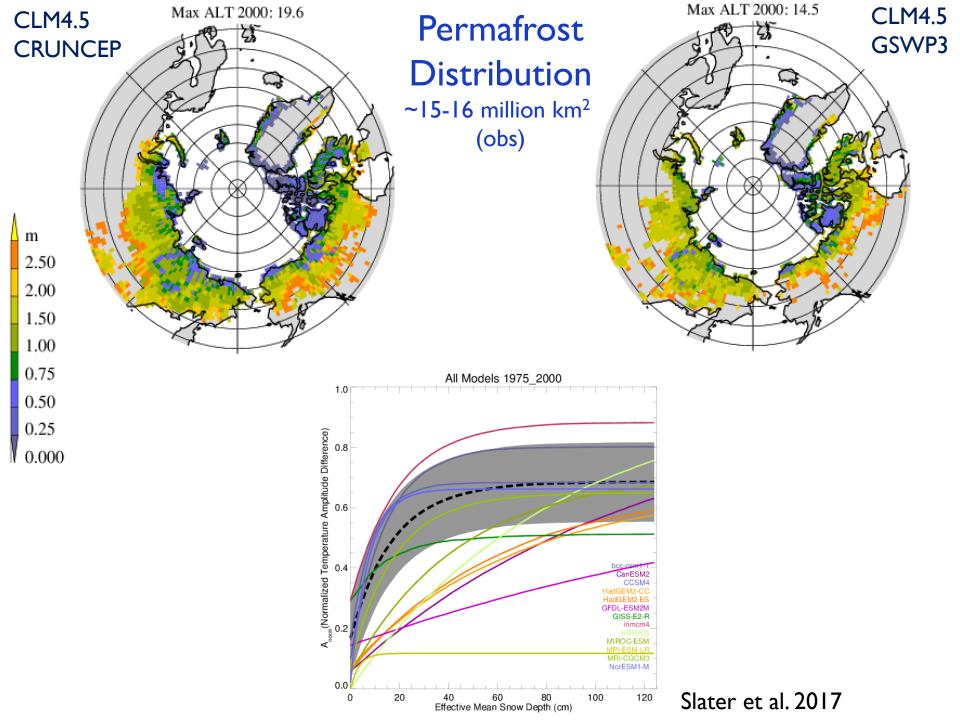


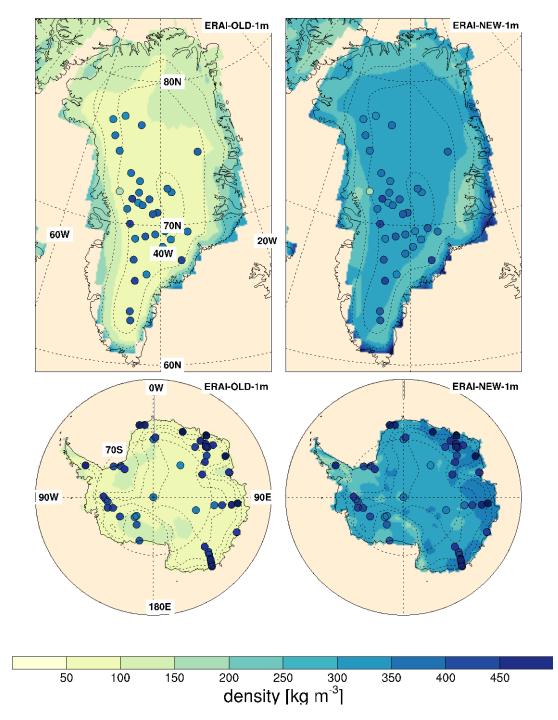


Preliminary assessment in fully coupled CESM

Conservation and the second

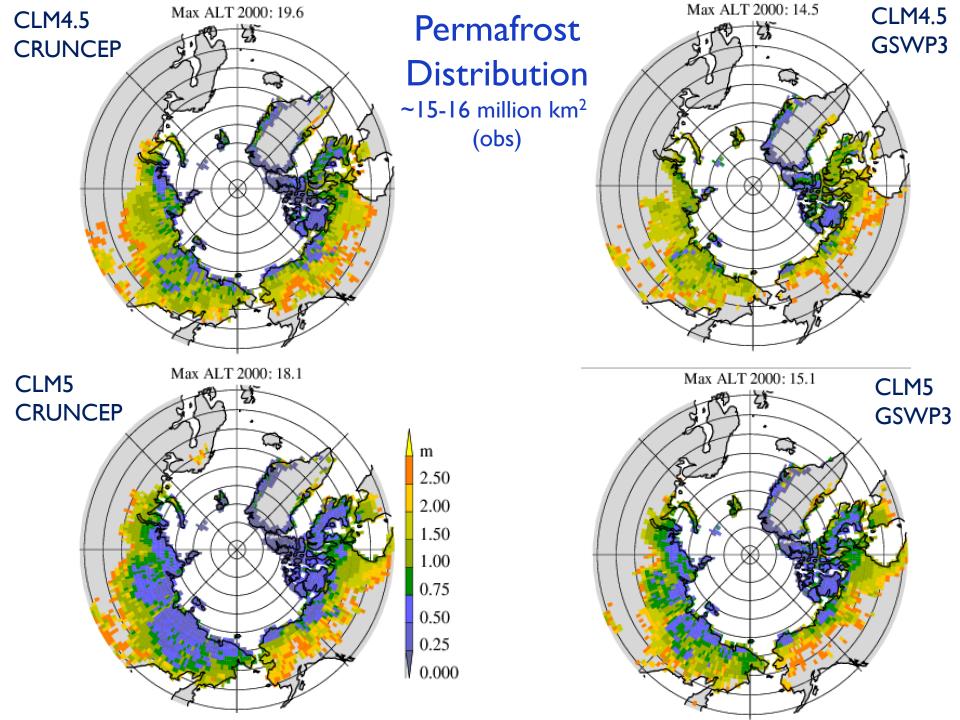


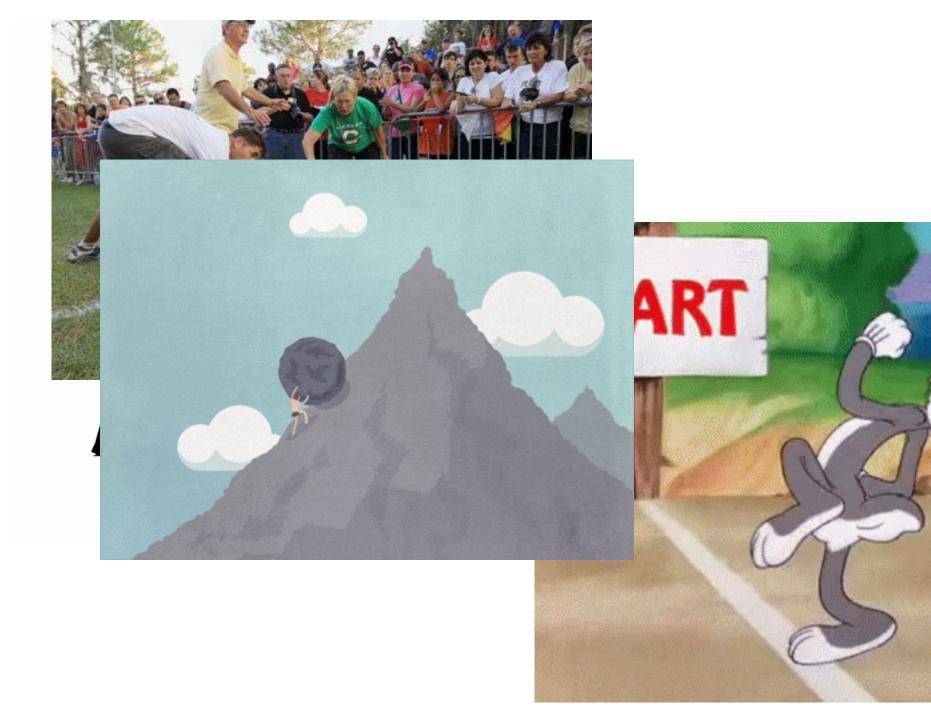

Thanks Questions or comments?

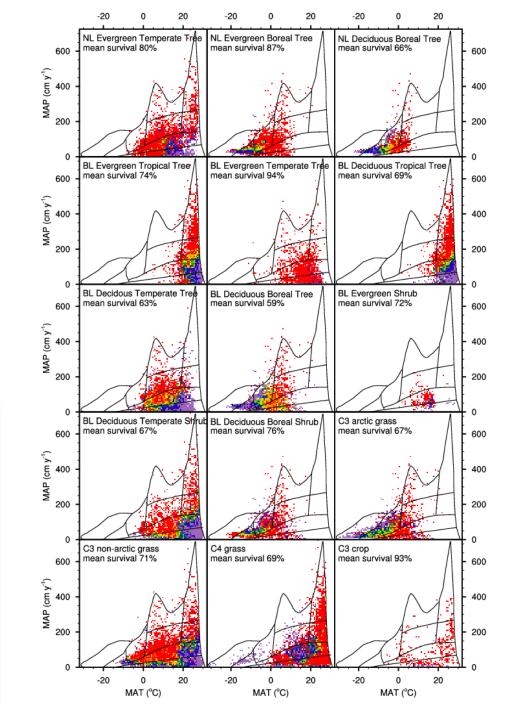


International LAnd Model Benchmarking (ILAMB) project

scores for RMSE, interannual variability, pattern correlation, variable-to-variable comparisons, +

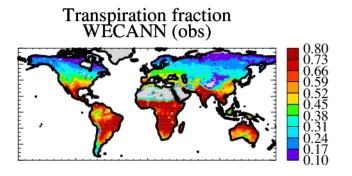


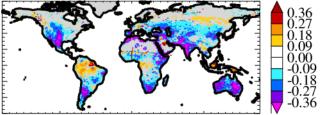


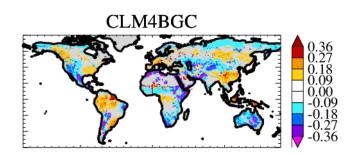

CLM5 snow density

Revised fresh snow density with improved temperature and wind effects Lead to increased and more realistic snow density and less thermal insulation

Figure courtesy L.Van Kampenhout







Survival Probability

