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Grand Objectives

e Develop a multi-mission, multi-platform, multi-
source, and multi-scale land data assimilation
system combining latest developments in both

observations and models

e Improve intraseasonal to seasonal climate and
hydrological predictions



Land vs. Seasonal Climate Prediction

 Land memory: important sources of predictability

— Snow: Douville (2010); Jeong et al. (2013); Orsolini et al. (2013)
— Soil moisture: Koster et al. (2004; 2010; 2011); Hirsch et al. (2013)

— Vegetation: Koster and Walker (2015); William and Torn (2015)

— Groundwater: Jiang et al. (2009)

Example: snow in the climate system

Immediate: Delayed: snow-
snow-albedo  hydrological
effect effects

evolution




Rain gauge density

Land-Derived Seasonal Climate Skill

Koster et al. (2011, JHM; GLACE-2) h =

1 Global land DA methodologies
remain to be developed and refined;

O No land DA involved in state-of-the-
art operational forecasting systems

such as the NMME
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Data Assimilation Research Testbed (DART)
+ Community Land Model (CLM4)
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Methodology Development

Our global multi-sensor multi-variate land DA system:
— improves SCF and SWE estimates by assimilating MODIS SCF for
unsaturated snow cover areas (0<SCF<1)
— (Zhang et al. 2014, JGR; Zhang and Yang, 2016, JGR);

— improves SWE estimates by assimilating AMSR-E TB (18.7 and 23.8 GHz)
for nearly saturated snow cover areas (SCF>0.5)

— (Kwon et al., 2015; Kwon et al. 2016, JHM);

— improves soil moisture estimates by assimilating AMSR-E TB (6.9 or
10.7 GHz) over snow free (SCF=0) and frozen-soil free (T,,,>0 °C) areas

— (Zhao et al. 2016, JHM);

— improves snow, soil moisture, and groundwater estimates by
assimilating GRACE TWS.

— (Zhang and Yang, 2016, JGR; Zhao and Yang, 2018, RSE);
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Multi-Sensor Land DA Prototype
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Zhao and Yang (2018, in revision)
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Research Questions:
e What are the relative contributions of different sensors?

e (Can joint assimilation of multi-sensor observations

improve the DA performance?



Eight Data Assimilation Experiments
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Open-loop, no DA
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Eight DA Experiments: Spatial Correlation
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Eight DA Experiments: Shnow Depth
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Eight DA Experiments: Soil Moisture
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Land DA in Seasonal Climate Prediction

(Offline) Observed Atmospheric
Forcing (P, T, Rad, q, u, v, ...)

1

> Land Surface Model

Land Products

(snow, soil moisture, ...)

—

Climate Prediction
(30—180 days; S2S)
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Data Assimilation Research Testbed (DART)
+ Community Land M__gdel (CLMA4)

IMODIS SCF . AMSRETB AMSRETE GRACE TWS

Research Questions
I O Can snow DA help with seasonal climate prediction?

N O If so, are there spatiotemporal patterns?

s 0 What is the added value of GRACE DA on top of MODIS DA?
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Experimental Design

e 504 ensemble-based “hindcast” simulations
— Using the Community Earth System Model (CESM 1.2.1);
— “AMIP” type runs: coupled CLM4-CAM5 experiments;
e 2003 to 2009 (7 years): Initialized on Jan 1, Feb 1, Mar 1

— 3 suites x 7 years x 3 start dates x 8 ensemble members

SST & Sealce Atmosphere Land Initialization
(CAM5)

CLM4 simulation without

DA
Mop Prescribed Initialized using CITM.A: sm:julatlon bl
using Hadley ERA-Interim data, 8- assimilated MODIS SCF
GRAMOD Centre data ensemble CLM4 simulation that
jointly assimilated MODIS
SCF & GRACETWS

Lin et al. (2016; GRL)



DA-Induced Changes: Initial Snow Conditions
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2-m Temperature Prediction
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Interesting Latitudinal Pattern

Latitudes: every
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Why Such Latitudinal Patterns?

-
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Rebound in Predictability

 Higher-latitude such as the Siberia

— Improved temperature prediction appears later in warmer months

— Due to strengthened snow-atmosphere coupling
(a) MOD — OL
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Seasonal Monsoon Rainfall Prediction

* Key drivers of Asian monsoon: the land-sea thermal contrast
between the Eurasian landmass and the oceans

— TP and Siberian snow are two important players

Can snow DA improve Asian monsoon rainfall seasonal forecast?

LT I S TR N iy

e CLMA4-CAMS5 experiments initialized on 1 March of 2003 to 2009
 Model runs extended to the end of August



Seasonal Asian Monsoon Prediction
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Regional Land DA vs. Seasonal Prediction
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River Basins Originating from the Tibetan Plateau
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River Discharge Modeling with Vector-Based Routing

Texas: Harvey

25 km GLDAS + HydrolK

1/8° Noah-MP +
15 sec HydroSHEDS

W. Wu, Z.-L. Yang, P. Lin (2017, AGU): A 37-year historical global simulation to
study floods and droughts






Summary

Developed a global land DA system capable of assimilating
MODIS, GRACE, and AMSR-E observations

0 Providing a robust soil moisture and snow estimation at the global scale;

Different sensors offer complementary information

O MODIS SCF leads to marginal improvements in the snow estimation at
mid- and high-latitude, where GRACE offers unique contribution;

O However, more sensors do not necessarily lead to optimal updates
(uncertainties with observations)

Land DA holds promise for improving seasonal hydroclimate
prediction: temperature, rainfall, runoff

O DA methodological improvements can further enhance the existing skills



Future Plans

" Potential collaborative efforts with NCAR and NASA:

1) Land DA with CLM5, Noah-MP, or the future unified NCAR Land Model;
2) Extended CAM/DART forcing from 2010 to 2017;

3) Assimilation of other satellite datasets such as SMAP, SWOT;

4) DA as a tool to assess the groundwater, snow, and vegetation
representations in the model

= Other applications with land DA:
1) DA with fully coupled earth system;
2) DA for river flow modeling;

3) DA with decision support system for early alert & warning
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Thank you for your attention!

Q&A

Peirong Lin: prlin@utexas.edu

* Zong-Liang Yang: liang@jsg.utexas.edu

f THE UNIVERSITY OF TEXAS AT AUSTIN

CENTER FOR INTEGRATED EARTH SYSTEM SCIENCE

TEXAS Geosciences

The University of Texas at Austin
Jackson School of Geosciences

http://www.geo.utexas.edu/climate

http://www.jsq.utexas.edu/ciess



mailto:prlin@utexas.edu
mailto:liang@jsg.utexas.edu
http://www.geo.utexas.edu/climate
http://www.jsg.utexas.edu/ciess




Key Points

Land state variables (soil moisture, snow mass, groundwater,
vegetation phenology) have value in predicting

— Climate

— Runoff and streamflow

— Extreme events (floods and droughts)

But high-quality global land state datasets have been lacking

Our collaborative efforts have been made in
— Developing a multivariate global land data assimilation framework
— Quantifying uncertainties
— Producing high-quality datasets
— Improving predictions (e.g., intraseasonal to seasonal climate prediction)
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