The FETCH2 plant hydrodynamic model and biomass hydraulic capacitance

Ashley M. Matheny Assistant professor University of Texas at Austin

Gil Bohrer, Golnaz Mirfenderesgi Ohio State University

TEXAS University of Michigan Biological Station (UMBS)

Temperate deciduous broadleaf forest (US-UMB, US-UMd)

8

UMBS research forest

Jackson School of Geosciences

Department of Geologic Sciences

TEXAS Species-specific regulation of water use

➤ Matheny et al. 2017, Ecohydrology

8

TEXAS Within ecosystem divergent hydraulic function is common!

```
WILEY
```

RESEARCH ARTICLE

Contrasting strategies of hydraulic control in two codominant temperate tree species

Ashley M. Matheny¹ I Richard P. Fiorella^{2,3} I Gil Bohrer¹ | Christopher J. Poulsen² |

 Timothy H. Morin¹ | Alyssa Wundt
 Hydraulic architecture of two species differing in wood

 density: opposing strategies in co-occurring tropical

 pioneer trees

KATHERINE A. MCCULLOH¹, DANIEL M. JOHNSON², FREDERICK C. MEINZER³, STEVEN L. VOELKER⁴, BARBARA LACHENBRUCH¹ & JEAN-CHRISTOPHE DOMEC^{2,5}

Boreal tree hydrodynamics: asynchronous, diverging, vet complementary

Differential use of spatially heterogeneous soil moisture by two semiarid woody species: *Pinus edulis* and *Juniperus monosperma*

DAVID D. BRESHEARS, ORRIN B. MYERS, SUSAN R. JOHNSON, CLIFTON W. MEYER and SCOTT N. MARTENS* Environmental Science Group, Mail Stop J495, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

ackson School of Geosciences De	Stephens ⁶
	Gil Bohrer ³ , Matteo Detto ^{7,8} , Jason Maillet ⁹ , Alexandre Roy ¹ , Oliver Sonnentag ¹ , and Jilmarie
	Christoforos Pappas ^{1*} , Ashley M. Matheny ^{2,3} , Jennifer L. Baltzer ⁴ , Alan Barr ⁵ , T. Andrew Black ⁶ ,

TEXAS FETCH2 plant hydrodynamics model

Mirfenderesgi, Bohrer, Matheny et al. 2016, JGR Biogeosciences

Jackson School of Geosciences

Department of Geologic Sciences

TEXAS Plant hydraulics models

Xu et al. 2016 New Phytologist (ED2-Hydro)

Oak, maple, and pine wood cross sections

• 1-D Richards equation along hydraulic path length *l*:

$$C(\Phi)\frac{\partial\Phi}{\partial t} = \frac{\partial}{\partial l} \left[K(\Phi) \left(\frac{\partial\psi}{\partial l} \right) \right] - Sink$$

• A modified 1-D Richards equation for flow in a tree:

$$C(\Phi) \frac{\partial \Phi}{\partial t} = \frac{\partial}{\partial z} \left[K(\Phi) \left(\frac{\partial \Phi}{\partial z} + \rho g \cos a \right) \right] - Ev$$

Capacitance Conductance Pressure gradient Transpiration

TEXAS Hydraulic trait parameterization

Matheny et al. 2016, Ecohydrology

TEXAS Can the FETCH2 model replicate behavior?

8

TEXAS FETCH2 simulation of the 'mini drought'

TEXAS Forest response to disturbance – a first test

TEXAS Changes to LAI

- Control LAI $\approx 3.89 \text{ m}^2\text{m}^{-2}$
- Disturbance LAI $\approx 3.68 \text{ m}^2\text{m}^{-2}$

TEXAS Scaling from trees to ecosystems

Multispectral imagery of UMBS

• Trees within the same histogram 'bin' are assumed to transpire similarly.

TEXAS FETCH2 Outputs

TEXAS Opposing reliance on capacitance

➤ Matheny et al. 2015, Ecosphere

8

Jackson School of Geosciences Department of Geologic Sciences

GS-3 in maple, 2016

TEXAS Biomass water content data – Available for use!

Julian day

8

Plant hydraulics models capture different drought responses

Interchangeable modules coming to a CLM-FATES near

you... eventually

Data available for test cases: sap flux (9 years), biomass water content (3 years) ashley.matheny@jsg.utexas.edu