Modeling the Hydro-Climatic Effects of Land Use and Land Cover Changes in the Euphrates & Tigris Basin Under a Changing Climate

Yeliz Yılmaz^{1*}, Ömer L. Şen¹, Ufuk U. Turunçoğlu²

¹Istanbul Technical University, Eurasia Institute of Earth Sciences

²Istanbul Technical University, Informatics Institute

*yelizyilmaz@itu.edu.tr

CESM Land Model Working Group Meeting, 5 February 2018, NCAR, Boulder

Harran Plain, Turkey Image source : Sentinel-2 - 2016

10 km

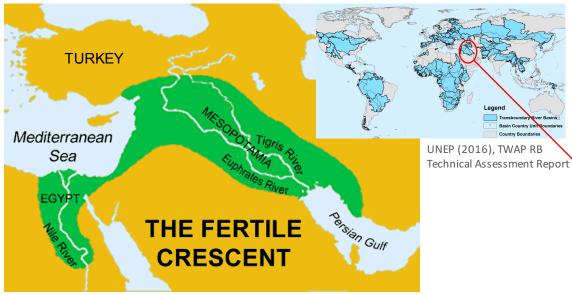
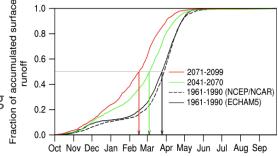
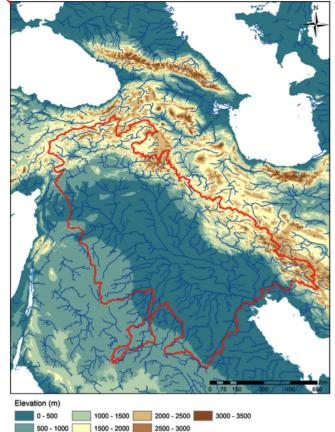
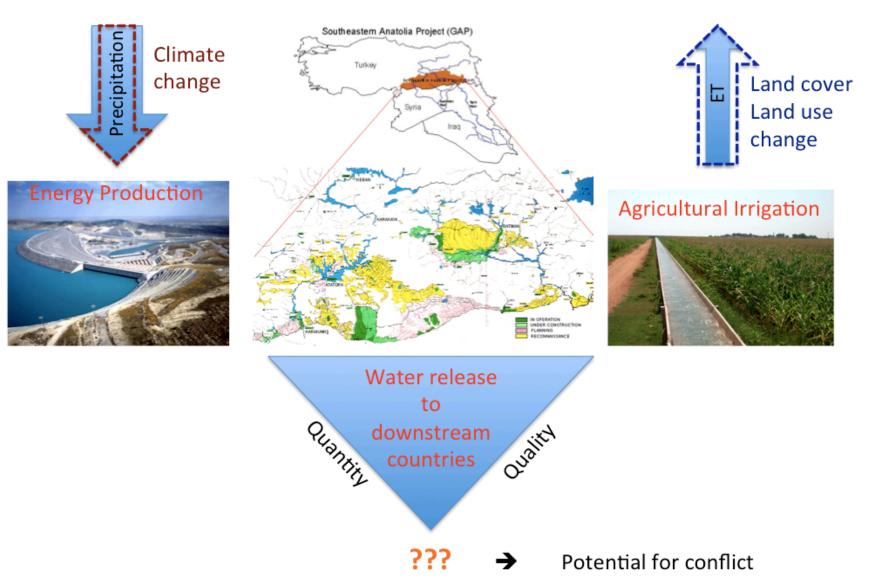



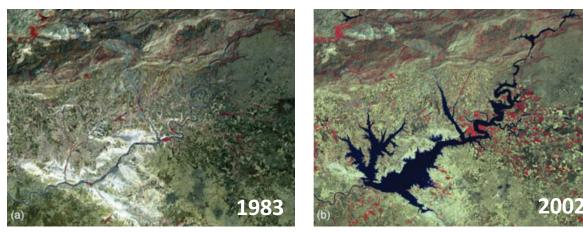
image source: Dowling, Mike.

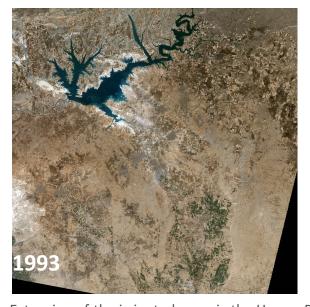

- Snow-fed river basin
- Future simulations
 - Precipitation decrease in headwaters region
 - Streamflow timings are shifting to earlier days
- Southeastern Anatolia Project
 - Irrigated cultivation

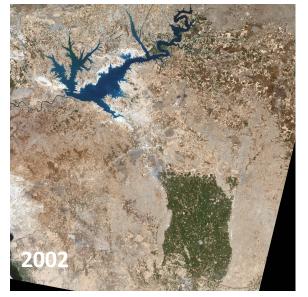
Motivation

Euphrates & Tigris Basin (ETB)


Bozkurt and Sen, J. of Hydrol.,2013


Southeastern Anatolia Project (GAP)





Southeastern Anatolia Project (GAP)

Landsat images show the area before (a) and after (b) the Ataturk Dam was built. https://visibleearth.nasa.gov/view.php?id=3796

Irrigated Area

2016
 502,154 ha

Future 1.8 million ha 22 dams 19 HPP

Extension of the irrigated areas in the Harran Plains. https://earthobservatory.nasa.gov/Features/HarranPlains/

Objectives

- To reveal the effect of LCLU changes on the climate and water resources of the region
- To calculate the water loss via evapotranspiration due to the extension of irrigated cultivation
- To evaluate how LCLU changes affect the regional water budget under a changing climate

Objectives

- To reveal the effect of LCLU changes on the climate and water resources of the region
- To calculate the water loss via evapotranspiration due to the extension of irrigated cultivation
- To evaluate how LCLU changes affect the regional water budget under a changing climate

Method

- Dynamical downscaling (regional climate model)
 - RegCM4 (revision 4283)

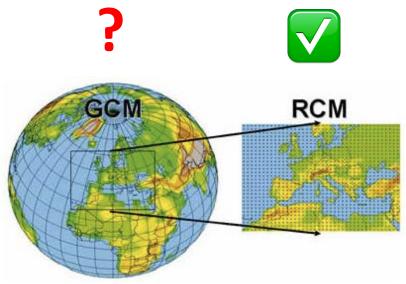
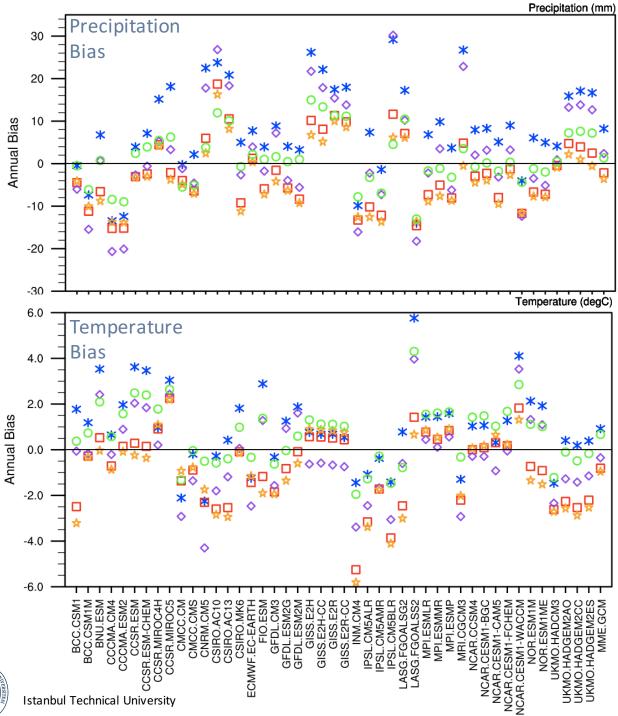
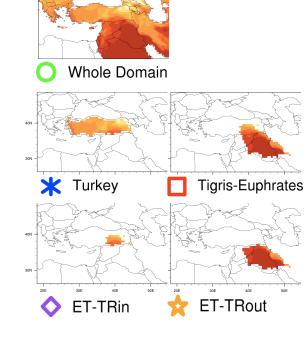


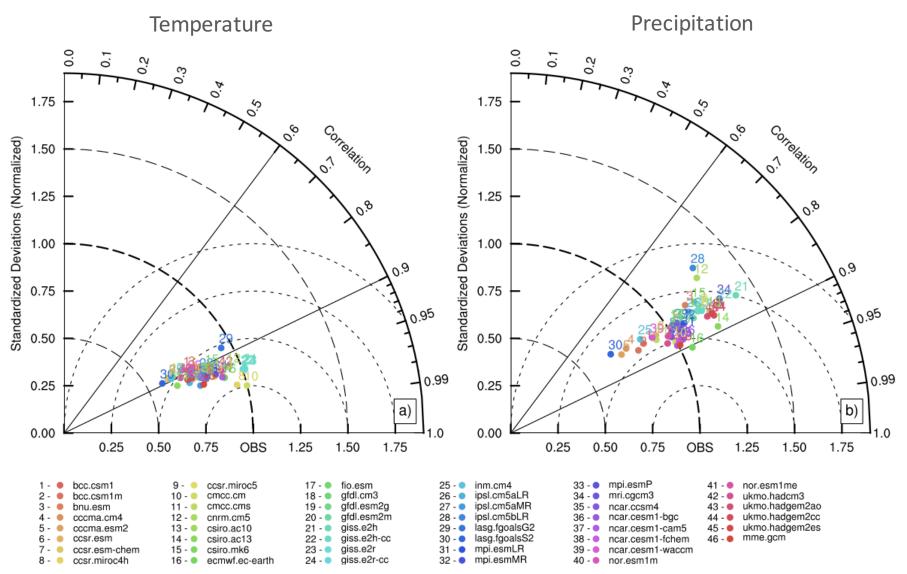
image source : F. Giorgi, WMO Bulletin 57(2), 2008


GCM	Model Name	Modeling Center (or Group)	Resolution (lat, lon)
1	BCC CSM1	Beijing Climate Center, China	2.8x2.8
2	BCC CSM 1M	Meteorological Administration	1.1x1.1
3	BNU ESM	College of Global Change and Earth System Science, Beijing Normal University	2.8x2.8
4	CCCMA CM4	Canadian Centre for Climate	2.8x2.8
5	CCCMA ESM2	Modelling and Analysis	2.8x2.8
6	CCSR ESM	Atmosphere and Ocean Research	2.8x2.8
7	CCSR ESM CHEM	Institute (The University of Tokyo),	2.8x2.8
8	CCSR MIROC4H	National Institute for Environmental Studies, and Japan	0.56x0.56
9	CCSR MIROC5	Agency for Marine-Earth Science and Technology	1.4x1.4
10	CMCC CM	Centro Euro-Mediterraneo per I	0.75x0.75
11	CMCC CMS	Cambiamenti Climatici	1.8x1.8
12	CNRM CM5	Centre National de Recherches Météorologiques / Centre Européen de Recherche et Formation Avancée en Calcul Scientifique	1.4x1.4
13	CSIRO AC10	Commonwealth Scientific and	1.25x1.8
14	CSIRO AC13	Industrial Research Organization in	1.25x1.8
15	CSIRO MK6	collaboration with Queensland Climate Change Centre of Excellence	1.8x1.8
16	ECMWF EC EARTH	EC-EARTH consortium	1.1x1.1
17	FIO ESM	The First Institute of Oceanography, SOA, China	2.8x2.8
18	GFDL CM3	NOAA Geophysical Fluid Dynamics	2x2.5
19	GFDL ESM2G	Laboratory	2x2.5
20	GFDL ESM2M		2x2.5
21	GISS E2H	NASA Goddard Institute for Space	2x2.5
22	GISS E2H-CC	Studies	2x2.5
23	GISS E2R		2x2.5
24	GISS E2R-CC		2x2.5


GCM	Model Name	Modeling Center (or Group)	Resolution (lat, lon)
		Institute for Numerical	
25	INM CM4	Mathematics	1.5x2
26	IPSL CM5ALR	Institut Pierre-Simon Laplace	1.9x3.75
27	IPSL CM5AMR		1.25x2.5
28	IPSL CM5BLR		1.9x3.75
29	LASG FGOALSG2	LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences and CESS, Tsinghua	2.8x2.8
30	LASG FGOALSS2	LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences	1.6x2.8
31	MPI ESMLR	Max-Planck-Institut für	1.9x1.9
32	MPI ESMMR	Meteorologie (Max Planck Institute	1.9x1.9
22		for Meteorology)	1010
33	MPI ESMP		1.9x1.9
34	MRI CGCM3	Meteorological Research Institute	1.1x1.1
		National Center for Atmospheric	
35	NCAR CCSM4	Research	0.9x1.25
36	NCAR CESM1-BGC		0.9x1.25
37	NCAR CESM1-CAM5		0.9x1.25
38	NCAR CESM1-FCHEM	Community Earth System Model Contributors	0.9x1.25
39	NCAR CESM1-WACCM		1.9x2.5
40	NOR ESM1M	Norwegian Climate Centre	1.9x2.5
41	NOR ESM1ME	, , , , , , , , , , , , , , , , , , ,	1.9x2.5
42	UKMO HADCM3	Mat Office Hadley Contro	2.5x3.75
43	UKMO HADGEM2AO	Met Office Hadley Centre (additional HadGEM2-ES realizations contributed by	1.25x1.875
44	UKMO HADGEM2CC	Instituto Nacional de Pesquisas	1.25x1.875
45	UKMO HADGEM2ES	Espaciais)	1.25x1.875
46	MME GCM	Multi Model Ensemble	0.5x0.5
_	nine com		

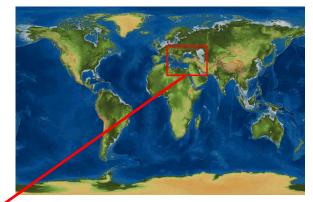
Observation :

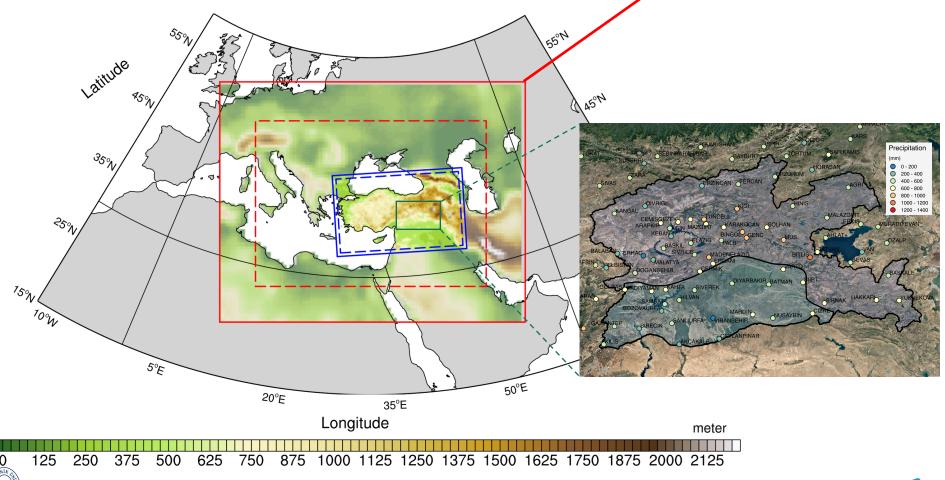
CRU (Climate Research Unit) TS v 4.01 (0.5°x0.5°)


http://www.cru.uea.ac.uk/cru/data/hrg/

Rank	Precipitation	Temperature
1	NCAR.CESM1-BGC	GFDL.ESM2G
2	NCAR.CESM1-FCHEM	CMCC.CMS
3	GFDL.ESM2G	UKMO.HADGEM2AO
4	UKMO.HADCM3	UKMO.HADGEM2ES
5	BCC.CSM1	IPSL.CM5AMR

Taylor Diagrams (whole domain - annual)





Study Domain

- Eastern Mediterranean and Black Sea (OD-48 km)
- Turkey (TR-12 km //with subgrid-3km)
- Euphrates & Tigris Basin

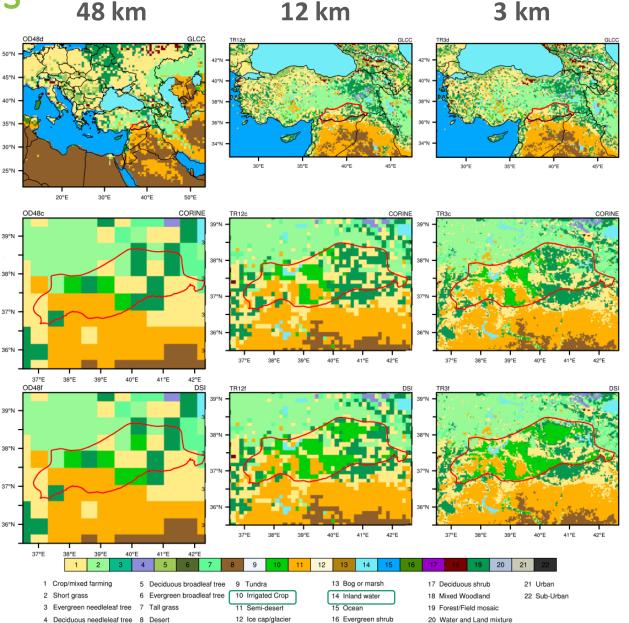
Model Configuration

Domain name	OD48 (48 km)	TR12 (12 km)	
Grid number (y,x), Vertical Resolution Center (latitude, longitude)	75x95, 18 level 40, 32	100x160, 23 level 38.7, 37	 Land surface process BATS (Biosphere-A Transfer Scheme)
Initial and Boundary Conditions (atmosphere, sst)	NNRP, OI_WKEC-EARTH	• OD48 outputs	Subgridding (3 km resolution)
Boundary Condition Parameters (nspgx,nspgd)	12,12	18,18	CLM (Community
Boundary Layer Model	Holtslag PBL	Holtslag PBL	
Cumulus Convection Scheme	Grell	Grell	
Cumulus Closure Scheme	Fritsch & Chappell	Fritsch & Chappell	
Moisture Scheme	SUBEX	SUBEX	
Ocean Flux Scheme	Zeng	Zeng	
Radiation Model	CCSM	CCSM	

Atmosphere

Land Model)

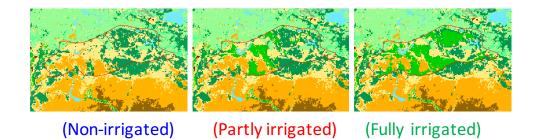
Landuse Maps


- GLCC (USGS)
- Non-irrigated

2000 period Current GAP (25%)

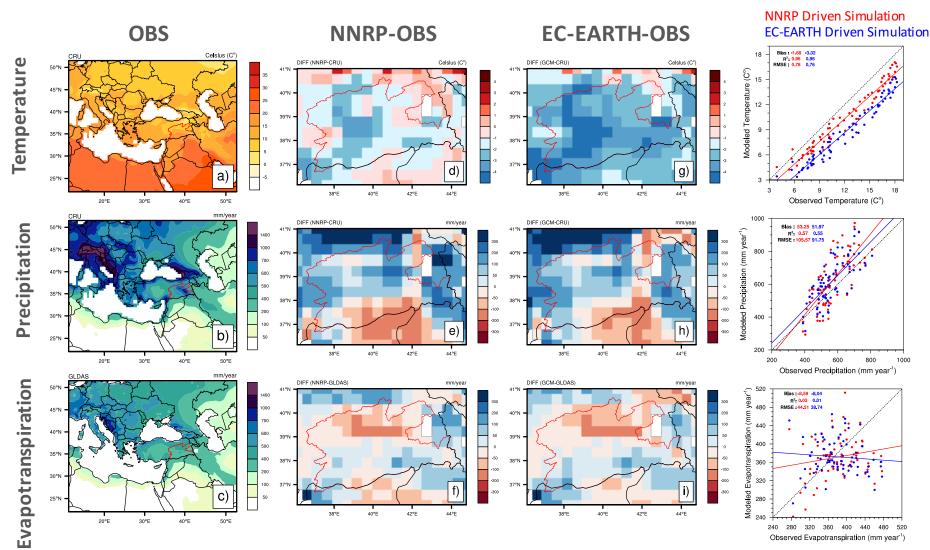
- CORINE (EEA)
- Partly irrigated

Future period Future GAP (%100)


- DSI (Turkish State Hydraulic Work)
- Fully irrigated

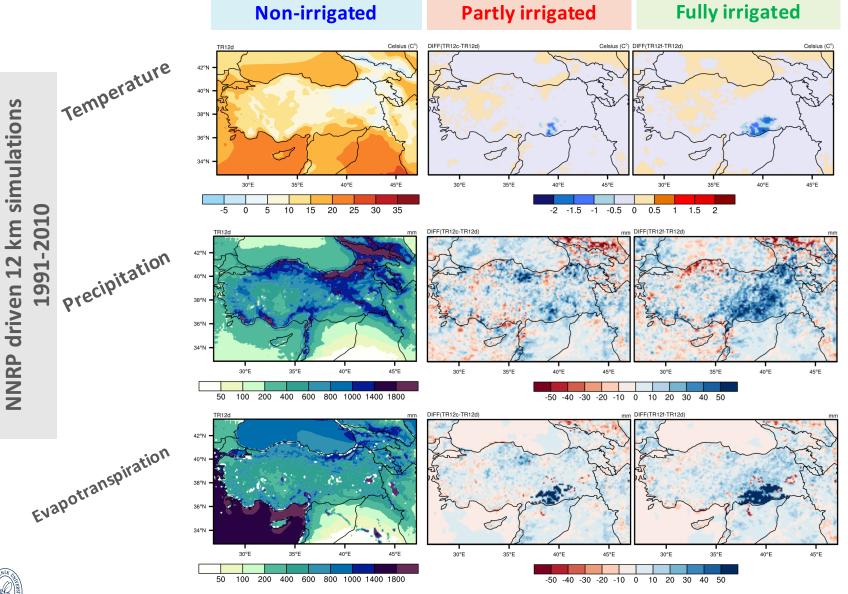
Experimental Design

No	Forcing Data	Land Use Map	Simulation Period
1	NCEP/NCAR Reanalysis	Non-irrigated	1991-2010
2	NCEP/NCAR Reanalysis	Partly irrigated	1991-2010
3	NCEP/NCAR Reanalysis	Fully irrigated	1991-2010
4	EC-EARTH	Non-irrigated	1986-2008
5	EC-EARTH / RCP 4.5	Non-irrigated	2046-2065
6	EC-EARTH / RCP 8.5	Non-irrigated	2046-2065
7	EC-EARTH / RCP 4.5	Fully irrigated	2046-2065
8	EC-EARTH / RCP 8.5	Fully irrigated	2046-2065
9	EC-EARTH / RCP 4.5	Fully irrigated	2081-2100
10	EC-EARTH / RCP 8.5	Fully irrigated	2081-2100



Model Evaluation 48 km (1991-2008)

No	Forcing Data	Land Use Map	Simulation Period
1	NCEP/NCAR Reanalysis	Non-irrigated	1991-2010
4	EC-EARTH	Non-irrigated	1986-2008

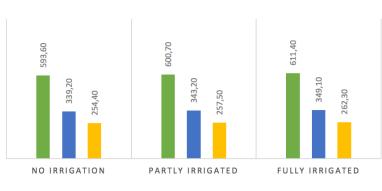


Effects of LCLU change

No	Forcing Data	Land Use Map	Simulation Period
1	NCEP/NCAR Reanalysis	Non-irrigated	1991-2010
2	NCEP/NCAR Reanalysis	Partly irrigated	1991-2010
3	NCEP/NCAR Reanalysis	Fully irrigated	1991-2010

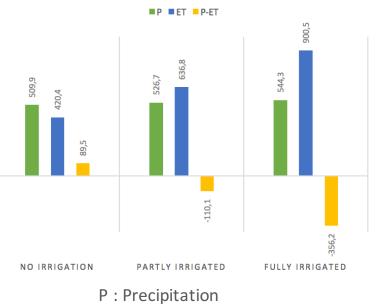
Istanbul Technical University

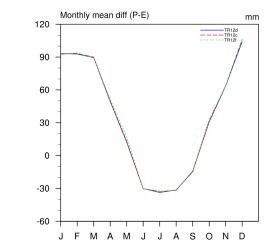
Eurasia Institute of Earth Sciences

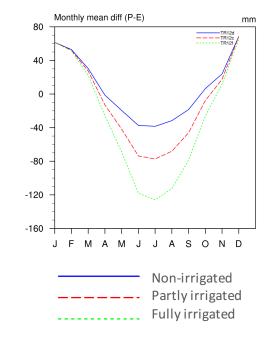


Effects of LCLU changes on the water budget **UPPER E&T BASIN**

1991-2010


51% with partly irrigated map Δ 114% with fully irrigatied map


increase of evapotranspiration in GAP



P ET P-ET

GAP REGION

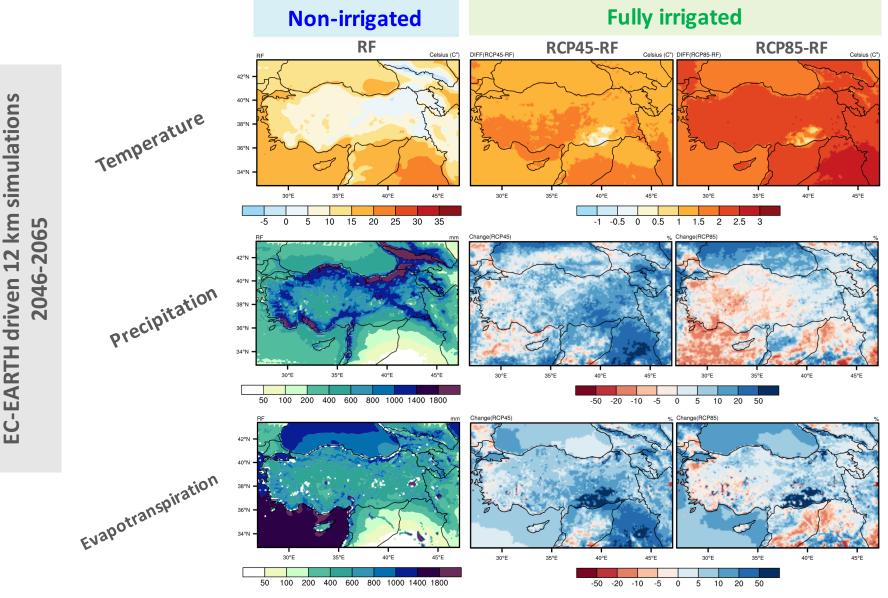
*unit (mm/year)

ET: Evapotranspiration

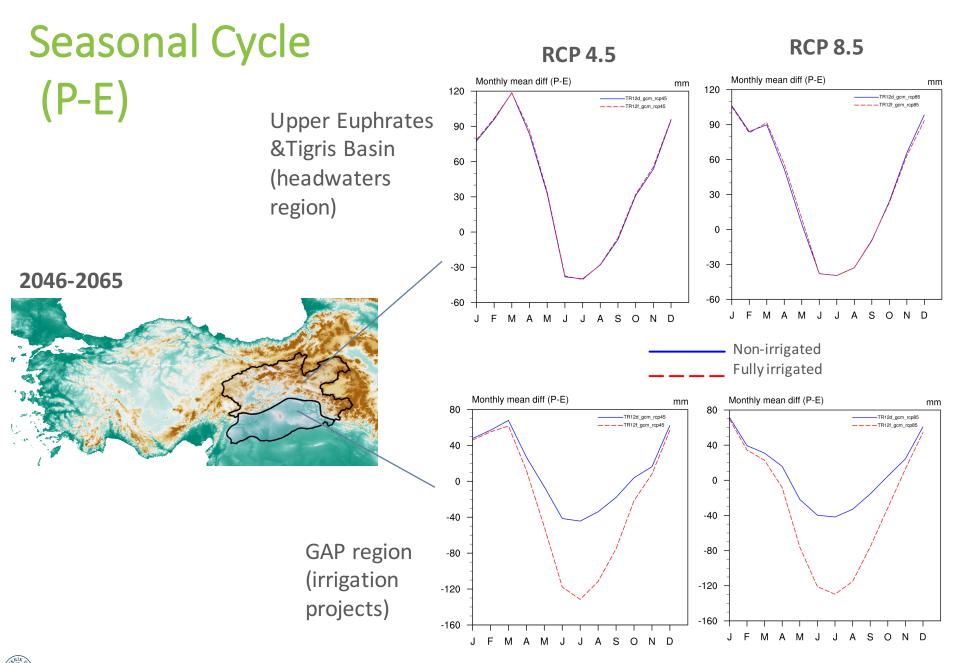
What happens if we ONLY change the LCLU?

- Land use and land cover changes cause
 - annual surface temperature decrease by about 0.4 °C and 0.8 °C (irrigation's cooling effect)
 - precipitation increase 3% and 7%, mostly in spring.
 (soil moisture ↑ ≫ latent heat flux ↑ ≫ convective precipitation ↑)
 - increase in evapotranspiration amounts by 51% and 114% compared to the pre-GAP conditions, which means significant water loss from the region.
- The increasing water demand of the irrigated region (GAP) is currently barely compensated by the headwaters of the Euphrates & Tigris basin.

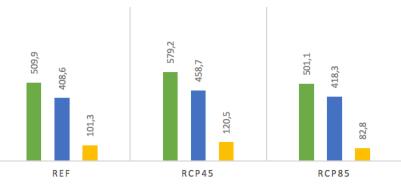
What happens if we ONLY change the LCLU?


- Land use and land cover changes cause
 - annual surface temperature decrease by about 0.4 °C and 0.8 °C (irrigation's cooling effect)
 - precipitation increase 3% and 7%, mostly in spring.
 (soil moisture 1 >> latent heat flux 1 >> convective precipitation 1)
 - increase in evapotranspiration amounts by 51% and 114% compared to the pre-GAP conditions, which means significant water loss from the region.
- The increasing water demand of the irrigated region (GAP) is currently barely compensated by the headwaters of the Euphrates & Tigris basin.

Let's add the effects of increasing greenhouse gas emissions!



INTEGRATED Effects of LCLU change + RCPs

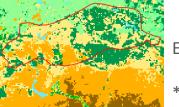

Effects of RCP scenarios

Integrated effects (LCLU + RCPs)

GAP REGION - FULLY IRRIGATED

GAP REGION - NO IRRIGATION

P ET P-ET



END:2081-2100

P: Precipitation **ET**: Evapotranspiration

*unit (mm/year)

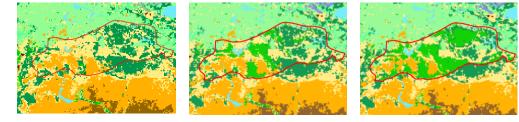
Conclusions

- Our experiment reveals that the regional water budget will be adversely affected by the water loss through the increased evapotranspiration.
- The increasing water demand of the irrigated region (GAP) is currently barely compensated by the headwaters of the Euphrates & Tigris basin.
- Temperature decrease caused by increased evapotranspiration will be at the same order of the increase in temperature due to RCP forcing. Hence, the temperature of the irrigated region will not be changed significantly in the future.
- The water of the region is primarily partitioned between energy production, irrigation and release for the downstream countries, the dramatic increase in water loss through evapotranspiration has potential to alter the water management practices and policy measures in the larger region.

Thank you*

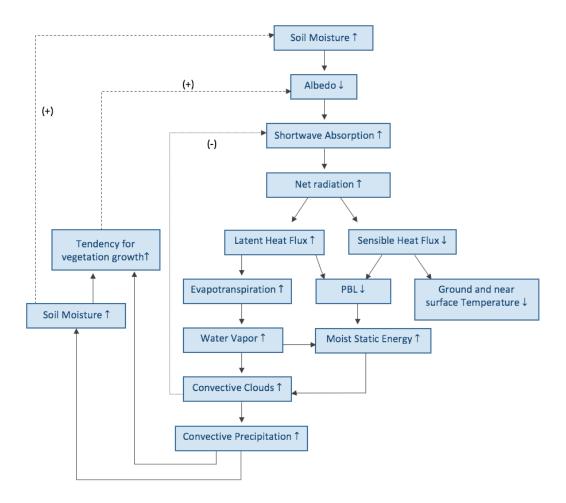
yelizyilmaz@itu.edu.tr

* This study was supported by TÜBİTAK (The Scientific and Technological Research Council of Turkey). Research Grant Number : 114Y114

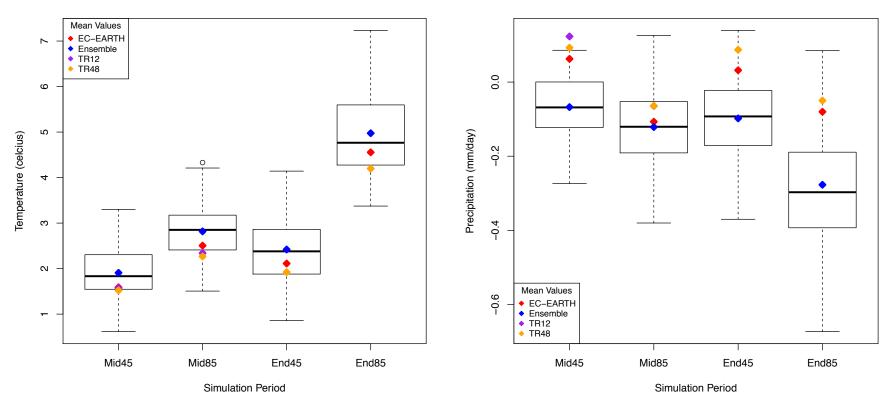

* My NCAR visit is currently supported by the TÜBİTAK Doctoral Research Fellowship Programme.

Change of Land Use Types

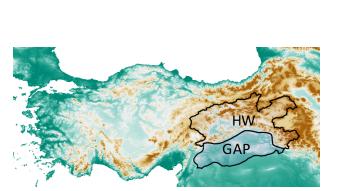
		Area (%)	
Land cover	Non-irrigated	Partly irrigated	Fully irrigated
1 - Crop/mixed farming	41.3%	32.2%	24.4%
2 - Short grass	8.4%	8.0%	7.9%
3 - Evergreen needleleaf tree	0.1%	0.1%	0.1%
4 - Deciduous needleleaf tree	0.1%	0.0%	0.0%
7 - Tall grass	0.6%	0.5%	0.5%
10 - Irrigated Crop	0.7%	17.4%	37.9%
11 - Semi-desert 14 - Inland water	14.6% 1.7%	12.6% 2.5%	10.6% 3.0%
19 - Forest/Field mosaic	32.4%	26.7%	15.6%

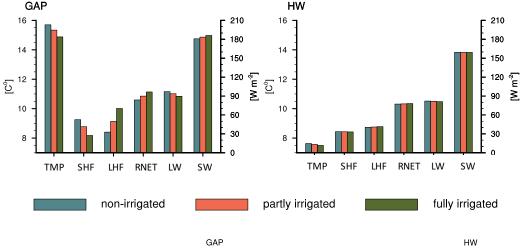

(Non-irrigated)

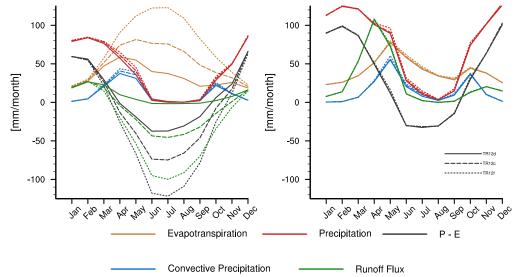
(Partly irrigated)


Conceptual diagram of the land-atmosphere interactions due to a change in soil moisture. The dashed lines show a positive feedback, while the dotted line represents a negative feedback. Figure is adopted from the studies of Pitman (2003), Lawrence & Slingo (2005) and Seneviratne et al. (2010).

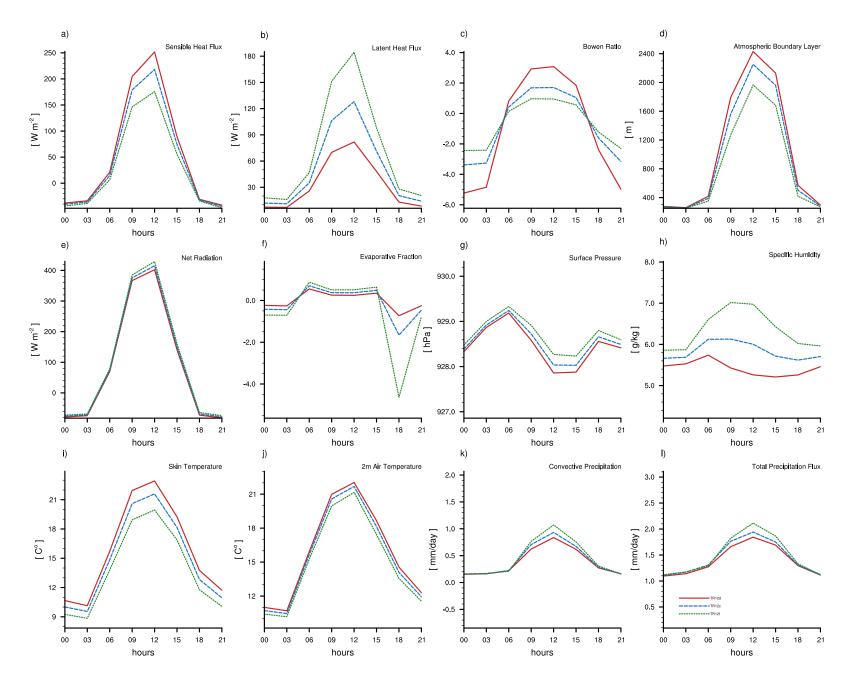
Performance Evaluation


FUTURE-REF (TURKEY)


FUTURE-REF (TURKEY)

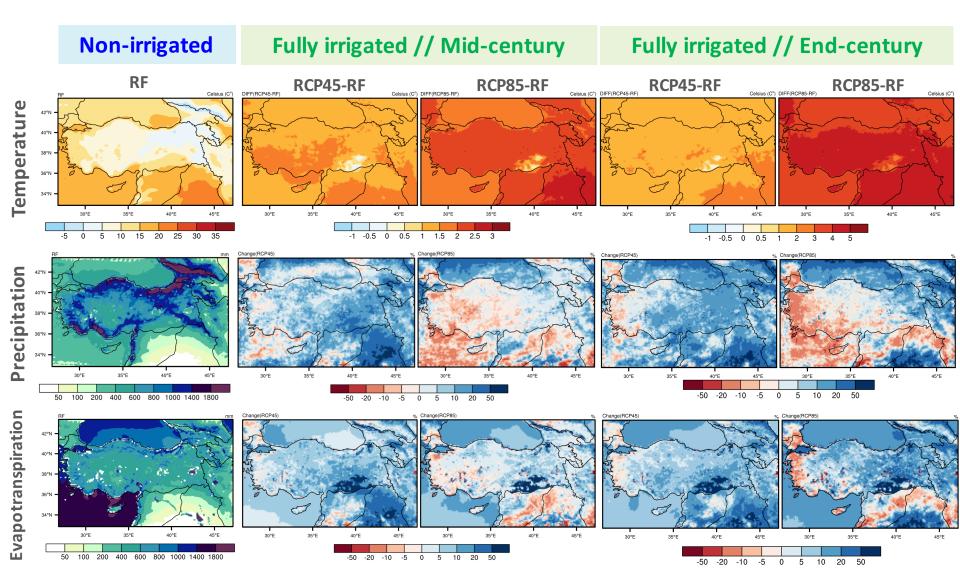


Effects of LCLU changes on the energy and water budget



Istanbul Technical University

Eurasia Institute of Earth Sciences



LCLU change + RCPs effect

