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Outline
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Two schools of thought in LSM development and evaluation   

Atmospheric Forcing

Model Structure 
Augments (gw, dv, …)

Model Evaluation Pyramid

Land Surface Model (BATS,   SiB, CLM, 
Noah, VIC, …)

LSM developers consider

1. Increasing realism in 
representing key processes

2. Understanding feedbacks and 
interactions

3. Maintaining synergism 
between LSM and other 
modules in the host GCM

4. Aiming for past, present, and 
future climate applications & 
operational weather/climate 
predictions

5. Generalizing parameterzations
across sites 

LSM evaluators consider

1. Uncertainty in many 
subsurface parameters and 
other non-measurable 
parameters

2. Uncertainty in atmospheric 
forcing and observations 
used for evaluation

3. Calibration of the parameters 
for the augmented part only 
or for the entire LSM

4. Evaluation in all dimensions

5. Equifinality?

LSM developers do not use 
automated, sophisticated 
evaluation tools.

LSM evaluators 
calibrate/evaluate LSMs that 
already exist.

How Can We Use Sophisticated Evaluation Methods To 
Guide LSM Development?

Demonstrate a new approach with the water balance 
problem (surface water budgets)
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Introduction: error attribution
From evaluation to development

Land Surface 
Model

Out 1

Out N

Input 1
(forcing)

Input N
(parameters)

…… ……

Obs. 1

Obs. N

……

How to attribute the error? 4



A Simple/Zero-order Problem
Long-term Surface Water Balance

𝑃𝑃 = 𝐸𝐸𝐸𝐸 + 𝑅𝑅

What may cause the bias?

(30-year mean)
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Can the “error” solely be attributed 
to the model in evaluation?

• Water budgets are not closed in 
the forcing and evaluation data.

• Water imbalance ~ 4% 
precipitation (CONUS)

• ~50% in the western US

• NLDAS P
• FLUXNET ET
• USGS R

1 =
𝐸𝐸𝐸𝐸
𝑃𝑃

+
𝑅𝑅
𝑃𝑃

+ 𝜖𝜖

Models do not have balance error.
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Which parameterization is responsible for 
the overall model error?

Precipitation

Turbulence

Interception
Transpiration

Evaporation

Root uptake

Surface Runoff

Subsurface
Runoff

SiB、SSiB
BATS
CLM
Noah
…
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A “Backward” and Iterative Approach 
for Model Developments

Bias

Obs

Model

U
ncertainty

Reduced Bias

Reduced U
ncertainty

Q1:
Diagnosing bias

Q2:
Attributing Uncertainty

Conventional approach: Implement a new process -> sensitivity -> evaluation
Our approach: evaluation -> attribution -> developments and improvements
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Questions

1. How to diagnose model bias using imbalanced water data?
• Rejection-based evaluation [Beven, 2012]
• Signature-based evaluation [Gupta et al., 2008]
• Rejection-based evaluation of signature (This study)

2. How to attribute model uncertainty to multiple interactive 
processes?
• process-based multi-hypothesis modeling [Clark et al., 

2011; Clark et al., 2015]
• Parameterization sensitivity (This study)
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Noah-MP Multi-Parameterization Ensemble

Physics
# of Parameterization 

Schemes

Parameterization 

Schemes

Stomatal Conductance 2 Ball–Berry, Jarvis

β-factor

(Soil moisture stress factor)
3 Noah, CLM, SSiB

Runoff

(Surface and subsurface)
4

SIMGM, SIMTOP, Noah, 

BATS

Turbulence 2 M-O, Chen97

2 × 3 × 4 × 2 = 48Noah-MP v3.6
NLDAS phase-2, 1/8 degree
Spin-up: 1979×100 + 1979 to 1982; Output: 1982 to 2011 (30 years)

Represent the parameterizations adopted by CLM, BATS, SSiB, and Noah
which are widely used in various applications and have influenced an 
array of LSMs.
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Rejection-based evaluation of signature

𝑃𝑃 = 𝐸𝐸𝐸𝐸 + 𝑅𝑅 1 =
𝐸𝐸𝐸𝐸
𝑃𝑃

+
𝑅𝑅
𝑃𝑃

Model Signature
(Precip. Partitioning)

Rejection Rules
(the difference 
between the 
model and 
observation is 
larger than the 
data uncertainty)

⁄𝑅𝑅 𝑃𝑃

𝐸𝐸𝐸𝐸
𝑃𝑃

Model Partitioning Uncertainty ~ 10%

Water Balance Error ~ 4%

1

10
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Rejection-based evaluation of signature

The parameters of the SAND soil type; ET overestimation in Ohio River Basin 12



Water Balance Error

In most areas:
• Imbalance of the data -> Bias of the 

simulations
• The bias does not reflect the 

inherent model error. 13



Q2, Uncertainty Attribution: 
Decomposition of the ensemble variance

𝑌𝑌 = 𝑓𝑓 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4

Parameterization Sensitivity 𝑆𝑆𝑖𝑖 =
𝐸𝐸𝑥𝑥~𝑖𝑖 𝑉𝑉𝑉𝑉𝑟𝑟𝑥𝑥𝑖𝑖 |𝑌𝑌 𝑥𝑥~𝑖𝑖

𝑉𝑉𝑉𝑉𝑟𝑟 𝑌𝑌

Four parameterization in Noah-MP
𝑥𝑥1: stomatal conductance
𝑥𝑥2: β-factor
𝑥𝑥3: runoff
𝑥𝑥4: turbulence
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Decomposition of the ensemble variance

• For canopy evaporation, the turbulence parameterization accounts for 100%
• For transpiration, the stomatal conductance parameterization accounts for 92%
• For surface runoff, the runoff parameterization accounts for 93%

• For ET, stoma contributes 51%, runoff contributes 26%, turbulence contributes 21%15



Spatial Pattern of the 
Parameterization Sensitivity

• For the stoma, the area is limited, but it dominates the continental-aggregated water balance.
• The runoff parameterization in the interior and western U.S. 16



Spatial Distribution of the 
Parameterization Sensitivity

• Stoma in humid regions
• Runoff parameterization in arid regions
• Turbulence in transitional zones.

Humid Arid

ET

R

ET

R

Arid Region

Humid Region
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Evaluation with obs.

In humid regions, Ball-Berry outperforms Jarvis
In transitional zones, their performances are compensated. 18



Seasonal changes in the parameterization 
sensitivity

Sensitivity of Evapotranspiration

Sensitivity of Runoff

Seasonal influence on ET from the stoma and turbulence parameterizations <- vegetation
The influence of stoma on R persists from warm seasons to winter due to land surface memory.19

The influence of 
stomatal conductance 
on ET ceases in winter.

It still influence R in 
winter.

Memory of land surface 
states.



Dominant parameterization for ET

• β-factor is more important on seasonal scales.
• ET-related parameterizations are more important to ET on seasonal scales than on the 

annual scale.
• From the annual mean to seasonality, the shifts of the dominant parameterizations are 

mainly located in transitional zones. 20



Dominant parameterization for R

• R-related parameterizations are more important on seasonal scales than on the annual scale.
• From the annual mean to seasonality, the shifts of the dominant parameterizations are mainly 

located in transitional zones.
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Dominant area fractions of CONUS
Seasons runoff β-factor turbulence Stomatal 

conductance

Evapotranspiration

Spring (MAM) 33% 7.4% 15% 45%

Summer (JJA) 28% 16% 8.9% 47%

Fall (SON) 43% 14% 8.7% 35%

Winter (DJF) 22% 7.1% 53% 18%
Average 31% 11% 21% 36%

Annual mean 59% 1.1% 11% 29%

Runoff

Spring (MAM) 68% 0.9% 11% 20%

Summer (JJA) 78% 0.0% 4.8% 17%

Fall (SON) 70% 1.3% 5.1% 23%

Winter (DJF) 74% 1.0% 3.8% 21%
Average 72% 0.8% 6.2% 20%

Annual mean 59% 1.1% 9% 30%

ET-related processes, four seasons > annual mean

R-related processes, four seasons > annual mean
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Discussions
• Limitations

• The parameterization schemes are not exhausted but reflect the 
accomplishments of several widely used LSMs. 

• No dynamic vegetation, which is important especially during 
extreme events such as droughts. As this demonstration study 
focuses on climatology and seasonality, we used the monthly 
vegetation greenness fraction climatology and parameters that are 
provided by NLDAS and widely used in NLDAS simulations.

• Have not included all snowpack-related processes (only the 
turbulence here), which are important for hydrology in spring and 
in mountainous regions.

• Have not included the parameter sensitivity. The parameters have 
been pre-calibrated manually by the parameterization developers
reflecting their practical estimations of the “truth”.

• Have not consider the sensitivity to the atmospheric forcing 
dataset. However, we related the results to the climatic aridity. The 
findings here should be independent to the atmospheric forcing 
datasets and therefore robust.
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Conclusions
• The backward approach and multi-parameterization models shed light on 

resolving the gaps between evaluation and development.

• Issues of the Noah-MP (and Noah) LSM need to be addressed: R 
overestimation over sand and ET overestimation over Deciduous Broadleaf 
Forest.

• The partitioning of P between ET and R is sensitive to the parameterization 
of stomatal conductance, suggesting the importance of plant physiology.

• The runoff parameterization is dominant in arid regions, the stomatal 
conductance parameterization is dominant in humid regions, and the 
sensitivity to the turbulence parameterization peaks in the transitional zone.

• ET-related parameterizations are more important on ET on finer time scales.

• R-related parameterizations are more important on R on finer time scales.

• The shifts of the dominant parameterization when the time scale is reduced 
from the climatology to seasonality mainly exists in transitional zones.
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Next

• Extend the evaluation timescale from the climatology 
to finer scales (monthly, daily, diurnal).

• Include more processes.
• Snow
• CO2 and dynamic vegetation

• Synthetically analyze the sensitivities to parameters 
and parameterizations.

Ultimate Goals
• From model evaluation to parameterization evaluation.
• A synthetic quantification of model and data 

uncertainty may lead to a better land data assimilation.
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Thanks for your attention!
Q & A

Hui ZHENG hui.iap@outlook.com

Zong-Liang YANG liang@jsg.utexas.edu

26

References
• Zheng et al., A Rejection-based evaluation of hydrological simulations using multiple types of 

observations (in prep.)
• Zheng et al., On the sensitivity of the precipitation partition into evapotranspiration and runoff in 

land surface parameterizations (in revision)

mailto:hui.iap@outlook.com
mailto:liang@jsg.utexas.edu


Ensemble Spread
𝝈𝝈𝒉𝒉𝒉𝒉𝒉𝒉

(ensemble spread)
𝝈𝝈𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕

(month-to-month 
variability)

𝝈𝝈𝒉𝒉𝒉𝒉𝒉𝒉
𝝈𝝈𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕

Runoff 38.0 98.2 0.387

Surface Runoff 19.8 24.9 0.793

Subsurface Runoff 30.3 76.5 0.396

Evapotranspiration 38.0 373 0.102

Evaporation from canopy 5.83 32.4 0.180

Evaporation from soil 23.3 117 0.199

Transpiration 43.0 252 0.171

Snow 0.194 7.91 0.0245

Soil moisture in top 10 cm 0.652 2.54 0.257

Soil moisture in top 1 m 10.3 22.4 0.461

Soil moisture in top 2 m 24.2 38.2 0.636

Groundwater 34.2 2.21 15.5
𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 and 𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙 are defined as [Dirmeyer, 2006, BAMS]27


	Patterns and signatures charactering the partitioning of precipitation into ET and R in land surface parameterizations
	Outline
	Slide Number 3
	Introduction: error attribution�From evaluation to development
	A Simple/Zero-order Problem�Long-term Surface Water Balance
	Can the “error” solely be attributed to the model in evaluation?
	Which parameterization is responsible for the overall model error?
	A “Backward” and Iterative Approach for Model Developments
	Questions
	Noah-MP Multi-Parameterization Ensemble
	Rejection-based evaluation of signature
	Rejection-based evaluation of signature
	Water Balance Error
	Q2, Uncertainty Attribution: Decomposition of the ensemble variance
	Decomposition of the ensemble variance
	Spatial Pattern of the Parameterization Sensitivity
	Spatial Distribution of the Parameterization Sensitivity
	Evaluation with obs.
	Seasonal changes in the parameterization sensitivity
	Dominant parameterization for ET
	Dominant parameterization for R
	Dominant area fractions of CONUS
	Discussions
	Conclusions
	Next
	Slide Number 26
	Ensemble Spread

