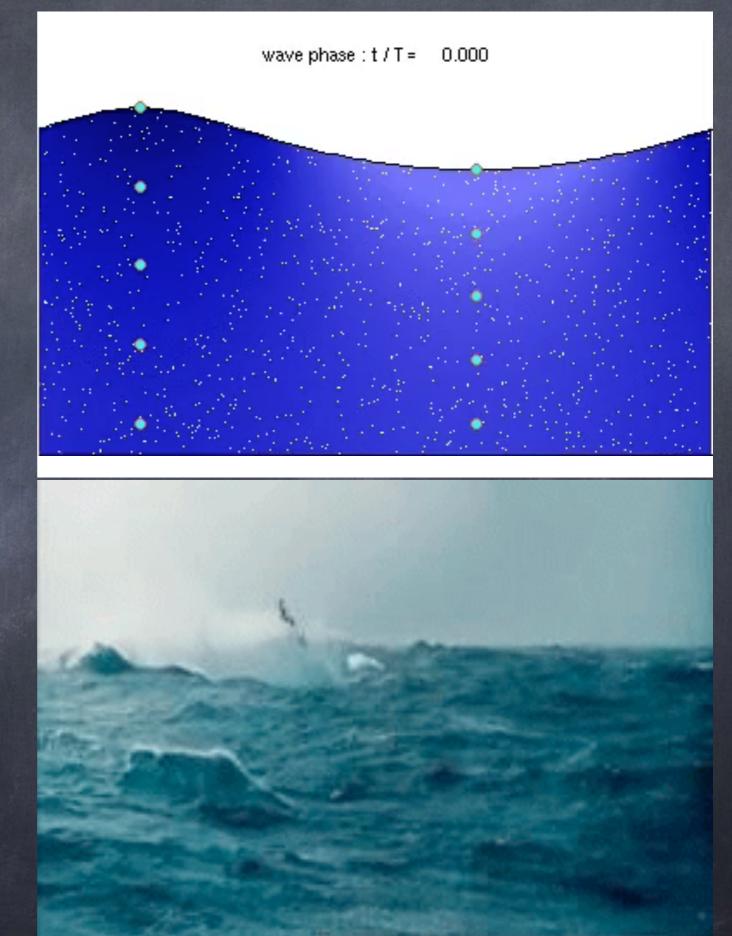
COWCLIP: Coordinated Ocean Wave Climate Project

Baylor Fox-Kemper Brown University, DEEP Sciences

With: Qing Li (Brown) & Mark Hemer (CSIRO) baylor@brown.edu

> Sponsors: NASA NNX09AF38G NSF OCE 0934737, WMO JCOMM


Surface Waves are...

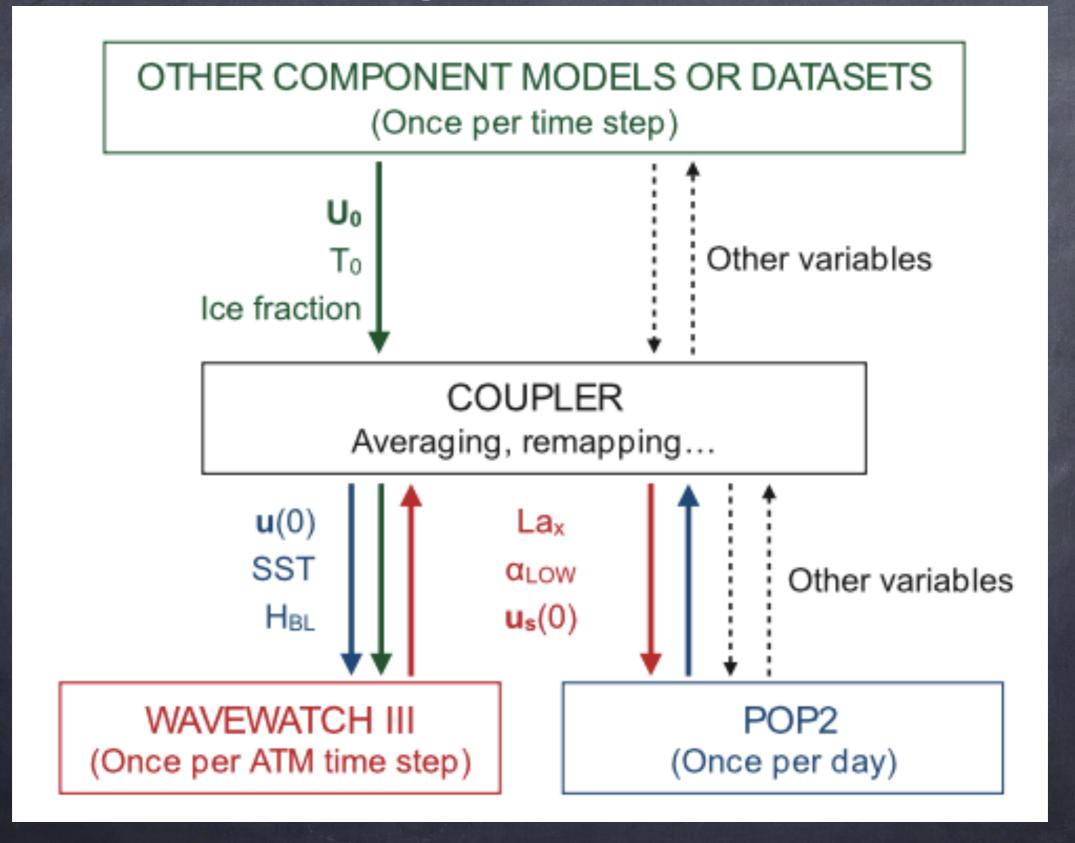
Fast, small, approx. irrotational solutions of the Boussinesq Equations

Have a Stokes drift depending on sea state (wave age, winds)

A. Webb and B. Fox-Kemper. Wave spectral moments and Stokes drift estimation. Ocean Modelling, 40(3-4):273-288, 2011.

A. Webb and B. Fox-Kemper. Impacts of wave spreading and multidirectional waves on estimating Stokes drift. Ocean Modelling, 96(1):49-64, 2015.

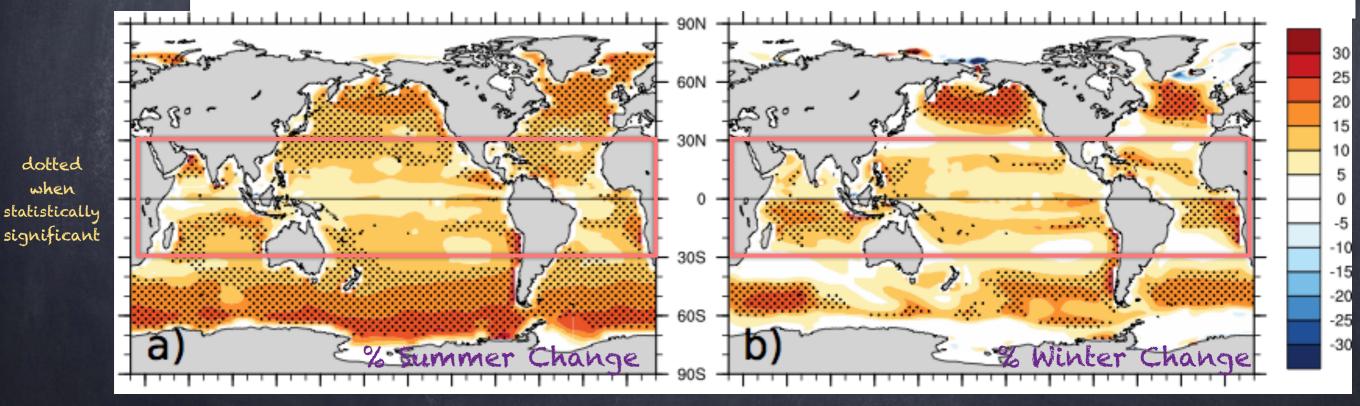
We've been busy on wave-current dynamics & Langmuir mixing: 3 Postdocs, 3.8 PhDs, 2 MAs, >18 papers.


With a few exceptions, not too much about the waves themselves.

Cavaleri, L., Fox-Kemper, B. and Hemer, M., 2012. Wind waves in the coupled climate system. Bulletin of the American Meteorological Society, 93(11), pp.1651-1661.

A. Webb and B. Fox-Kemper. Impacts of wave spreading and multidirectional waves on estimating Stokes drift. Ocean Modelling, 96(1):49-64, December 2015.

A. Webb and B. Fox-Kemper. Wave spectral moments and Stokes drift estimation. Ocean Modelling, 40(3-4):273-288, 2011.


In CESM2, though... waves are routine.

Q. Li, A. Webb, B. Fox-Kemper, A. Craig, G. Danabasoglu, W. G. Large, and M. Vertenstein. Langmuir mixing effects on global climate: WAVEWATCH III in CESM. Ocean Modelling, 103:145-160, July 2016.

Langmuir Mixing in Climate: Boundary Layer Depth Improved

	Case		Summer			Winter	
		Global	South of 30° S	$30^\circ \text{S}-30^\circ \text{N}$	Global	South of 30° S	$30^\circ \text{S}-30^\circ \text{N}$
Control	CTRL	$10.62 {\pm} 0.27^{\rm a}$	$17.24 {\pm} 0.48$	$5.38 {\pm} 0.14$	$43.85 {\pm} 0.38$	$57.19 {\pm} 0.76$	12.57 ± 0.28
		$(13.40 \pm 0.19)^{\rm b}$	(21.73 ± 0.32)	(6.71 ± 0.09)	(45.50 ± 0.40)	(56.53 ± 0.59)	(16.16 ± 0.29)
Competition	MS2K	15.37	15.47	17.03	119.91	171.92	40.31
	SS02	36.79	63.83	7.54	99.32	164.34	17.39
3 versions of	VR12-AL	9.06	13.47	6.49	40.45	50.33	14.52
Van Roekel et	VR12-MA	$8.73 {\pm} 0.30$	$12.65 {\pm} 0.47$	$6.61 {\pm} 0.22$	$40.99 {\pm} 0.37$	$51.78 {\pm} 0.65$	14.23 ± 0.30
al		(11.83 ± 0.29)	(18.13 ± 0.62)	(7.52 ± 0.16)	(42.02 ± 0.39)	(50.78 ± 0.67)	(15.67 ± 0.35)
	VR12-EN	8.95	10.52	8.91	41.94	52.98	19.58

L. P. Van Roekel, BFK, P. P. Sullivan, P. E. Hamlington, and S. R. Haney. The form and orientation of Langmuir cells for misaligned winds and waves. Journal of Geophysical Research-Oceans, 117:C05001, 22pp, May 2012.

Q. Li, A. Webb, BFK, A. Craig, G. Danabasoglu, W. G. Large, and M. Vertenstein. Langmuir mixing effects on global climate: WAVEWATCH III in CESM. Ocean Modelling, 103:145-160, July 2016.

CONCLIP

- COWCLIP aspires to understand climate change in global wave statistics
- o IPCC has sought this info since AR4.
- Wave models have been run offline, with CMIP saved winds, Etc.
- We will do projection with waves coupled online in CESM2

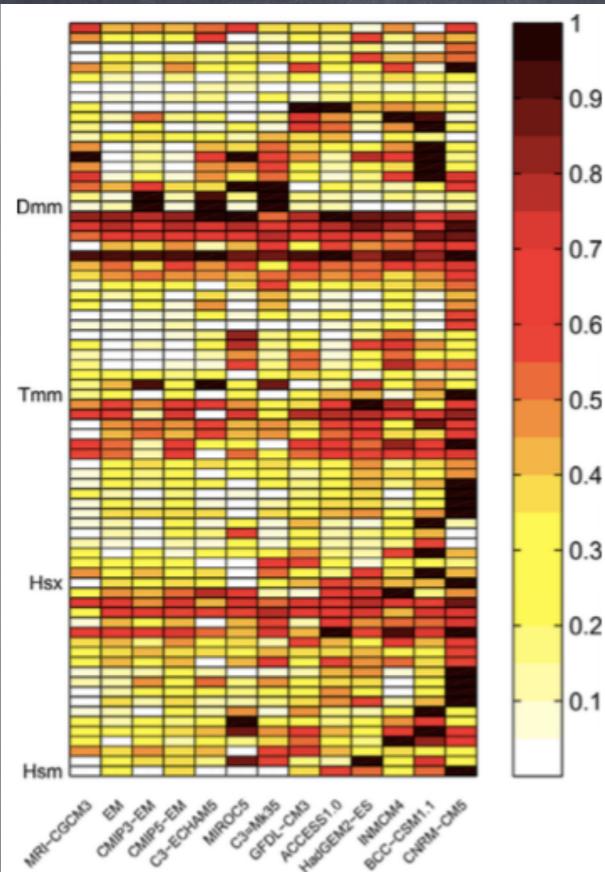
Hemer, M.A., Wang, X.L., Weisse, R. and Swail, V.R., 2012. Advancing wind-waves climate science: The COWCLIP project. Bulletin of the American Meteorological Society, 93(6), pp.791-796.

Hemer, M.A., Fan, Y., Mori, N., Semedo, A. and Wang, X.L., 2013. Projected changes in wave climate from a multi-model ensemble. Nature climate change, 3(5), pp.471-476.

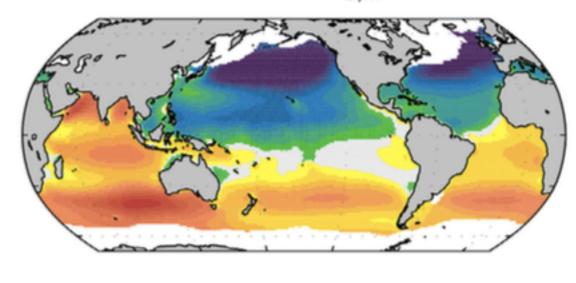
Wang, X.L., Feng, Y. and Swail, V.R., 2014. Changes in global ocean wave heights as projected using multimodel CMIP5 simulations. Geophysical Research Letters, 41(3), pp.1026-1034.

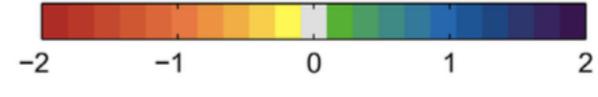
Hemer, M.A. and Trenham, C.E., 2016. Evaluation of a CMIP5 derived dynamical global wind wave climate model ensemble. Ocean Modelling, 103, pp.190-203.

CMIPS List of models

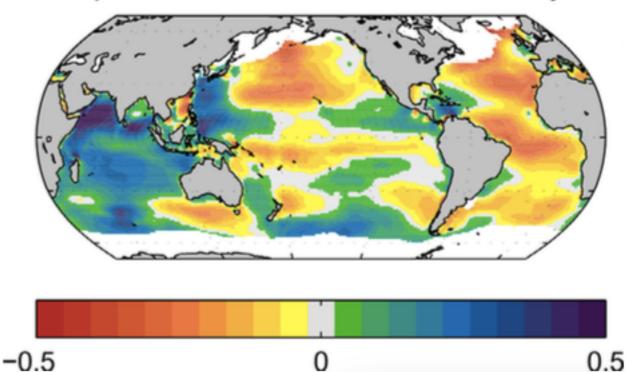

Table 1

CMIP models (Phase 3 and 5) used in the study. Description of the ensemble means assessed in the study are also given.


ID	Full model name	Model	CMIP phase
1	Australian Community Climate and Earth System Simulator 1.0	ACCESS1.0	5
2	Beijing Climate Centre, Climate System Model, 1-1	BCC-CSM1.1	5
3	Centre National de Recherches Meteorologiques Coupled Global Climate Model, version 5	CNRM-CM5	5
4	Geophysical Fluid Dynamics Laboratory Earth System Model 2M	GFDL-ESM2M	5
5	Hadley Centre Global Environmental Model 2, Earth System	HadGEM2-ES	5
6	Institute of Numerical Mathematics Coupled Model, version 4.0	INMCM4	5
7	Model for Interdisciplinary Research on Climate, version 5	MIROC5	5
8	Meteorological Research Institute Coupled Atmosphere-Ocean General Circulation Model, version 3	MRI-CGCM3	5
9	ECMWF Hamburg climate model, version 5, dynamically downscaled using CCAM	CMIP3-CCAM-ECHAM5	3
10	CSIRO Mk3.5 general circulation, version 3.5, dynamically downscaled using CCAM	CMIP3-CCAM-CSIROMk3.5	3
11	Ensemble mean of CMIP-5 simulations (models 1-8)	CMIP5-EM	-
12	Ensemble mean of CMIP3-CCAM simulations (models 9-10)	CMIP3-CCAM-EM	-
13	Ensemble mean of all simulations (models 1-10)	EM	-


Hemer, M.A. and Trenham, C.E., 2016. Evaluation of a CMIP5 derived dynamical global wind wave climate model ensemble. Ocean Modelling, 103, pp.190-203.

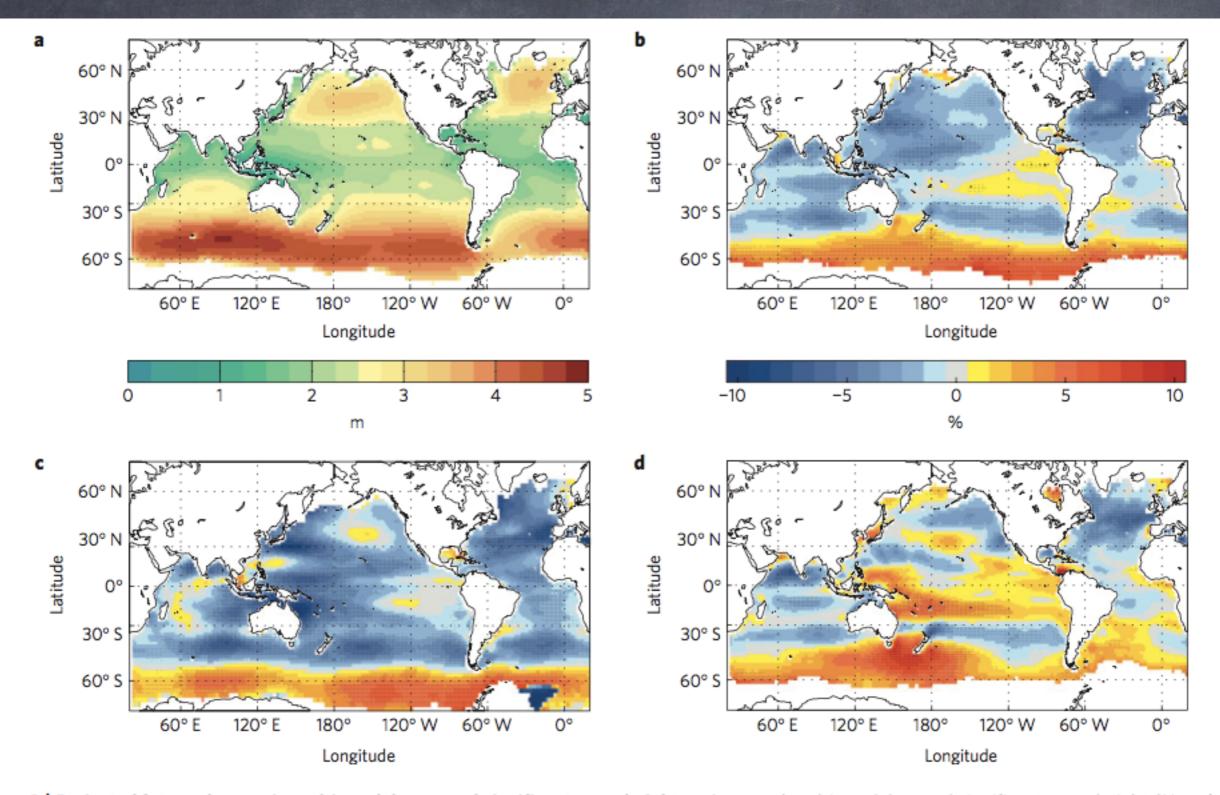
Waves are new diagnosticconstrained by obs!



a) Multi Model Mean H_{S,m} seasonality

b) Multi Model Mean Bias in seasonality

Mave extremes are important


The getStat.f is for calculating the following 7 statistics from an input wave data chosen by the user:

avg - the mean p10 - the 10th Percentile p50 - the 50th Percentile p90 - the 90th Percentile p95 - the 95th Percentile p99 - the 99th Percentile max - the maximum

In order to calculate these statistics for the COWCLIP-required 17 time-frames [12 monthly, 4 seasonal (DJF, MAM, JJA and SON), and an annual value], users need to run the program three times, one for each of the following 3 target time-frame resolutions:

MLY - for monthly statistics SNL - for seasonal statistics ANL - for annual statistics

Future waves are interesting-Societal value through inundation, erosion, etc.

Figure 2 | **Projected future changes in multi-model averaged significant wave height. a**, Averaged multi-model annual significant wave height (*H*_S, m) for the time-slice representing present climate (~1979–2009). **b**–**d**, Averaged multi-model projected changes in annual (**b**), JFM (**c**) and JAS (**d**) mean *H*_S for the future time-slice (~2070–2100) relative to the present climate time-slice (~1979–2009) (% change). Stippling denotes areas where the magnitude of

Conclusions

 CESM2 is in a position to be the first model to submit a coupled ESM-wave model to COWCLIP

- The data is already output in "standard" WaveWatch configuration. We will collect & condense from DECK sims, etc., as required to match other centers
- COWCLIP is not a MIP formally, as it doesn't normally required coupled sims. Does have IPCC & WMO support.
- We hope to receive beneficial cross-comparison stats about our wave modeling system (resolution, etc.).
 Will also identify relative wind errors.
- CIME, NUOOPC will make upgrading WaveWatch from NCEP easier, as in-house wave expertise is limited.