2018 OMWG Winter Meeting

A New Dataset for Forcing Ocean – Sea-ice simulations: JRA55-do

Jan. 11, 2018

Who M. Kim

R. J. Small, S. Yeager, G. Danabasoglu (NCAR)

H. Tsujino, (JMA-MRI), and CLIVAR OMDP

Outline

- ✓ Description of JRA55-do (v1.3)
 - Adjustments applied to raw JRA55
 - Derived surface fluxes in comparison to those from CORE-IAF
 - Manuscript submitted to Ocean Modeling (Tsujino et al. 2018)
- ✓ Simulations
 - Current status of JRA55-do simulations using POP2-CICE5

CORES

- ✓ The Coordinated Ocean-ice Reference Experiments (COREs) have provided common protocols for performing ocean—sea-ice simulations.
- ✓ The forcing dataset based on Large and Yeager (2009)
 - CORE-I (CORE-NYF) and CORE-II (CORE-IAF)
 - Easily accessible
 - Used for a variety of research topics (e.g., NA: Danabasoglu et al. 2014 & 2016; SO: Farneti et al. 2015; Sea level: Griffies et al. 2014)
 - Widely used to evaluate ocean and sea-ice models

Why Are We Switching Forcing?

- ✓ Not been updated since 2009 largely due to discontinuity in satellite-based radiation fields
 - → Not suitable for studies focusing on recent climate events (e.g., Arctic Seaice decline, and recent El Nino event)
- ✓ Based on NCEP, coarse resolution (~200 km/6 hourly)
 - → Not ideal for high-resolution and regional simulations
- ✓ It's been a decade, time to revisit the methodologies and reference datasets
- ✓ CLIVAR OMDP decided to adopt the Japanese 55-year Reanalysis (JRA55) as the new source dataset.

A Quick JRA55-do and CORE Comparison

✓ Higher (temporally and spatially) resolution; self-consistent; near real-time

	JRA55-do (~55 km)	CORE-IAF (~200 km)
Atm. State (T, q, U, & SLP)	JRA55 (3-hr)	NCEP (6-hr)
Radiation (Q _{SW} & Q _{LW})	JRA55 (3-hr)	GISS ISCCP-FD (daily)
Precipitation	JRA55 (3-hr)	GPCP/CMAP/Serreze (monthly)
Runoff	Suzuki et al. (2017) (JRA55-based; daily)*	Dai et al. (2009) (monthly climatology)
Available Period	1958 - present	1948 – 2009#
Adjustment strategy	Time-dependent (Phase I-III)	Time-invariant

^{*} In addition, observed solid and liquid runoffs from Greenland and Antarctica are included

[#] Interannually varying only after 1979 and 1983 for precipitation and radiation, respectively

Adjustments

✓ Adjustments toward obs were applied to reduce biases as in CORE

✓ Time-dependent adjustments because of shifts in raw JRA55 due to changes in observation systems

Summary of Adjustments

- ✓ To close long-term heat and freshwater flux budget, an global adjustment is applied to downwelling radiations and precipitation, respectively.
- ✓ For the detailed methods of adjustments, see Tsujino et al. (2018)

Runoff Data

- ✓ A river-routing model (0.25°) forced by the input runoff from the land-surface component of JRA55 (*Suzuki et al. 2017*)
- ✓ Greenland runoff: monthly climatology (1961-1990) from Bamber et al. (2012)
 - → An order higher than CORE runoff (0.028 Vs. 0.002 Sv)
- ✓ Antarctic runoff: annual mean from Depoorter et al. (2013)
 - → similar in total magnitude, but spatial distribution is different

Heat Fluxes*

* Lower boundary conditions: COBESST

Globally Averaged Heat Fluxes

Tsujino et al. (2018)

Fw Fluxes

Globally Averaged Fw Fluxes

Tsujino et al. (2018)

Long-term Mean

Implied Heat Transport

- ✓ In CORE-II simulations, AMOC is healthy with default setup
- ✓ In JRA55-do simulations, AMOC collapses with the same setup

* Both experiments are run for 5 cycles by repeating the 1958-2009 period (52 yrs)

✓ The AMOC collapse is ultimately related to winds

8

- ✓ Tuning: 1) increasing salinity restoring time scale
 - → Currently 4-yr, but even 1-yr is widely used

- ✓ Tuning: 2) No ocean currents in flux computation
 - $\rightarrow \Delta U = U_a U_o$, but $\Delta U = U_a$ because U_a is already adjusted towards "relative" QuikSCAT
 - $\rightarrow \Delta U = U_a$ doesn't help for the AMOC strength, but **do improve equatorial** current systems (see Yu-heng Tseng's talk)

Weaker along coast winds in JRA55-do

- ✓ Tuning: 3) Enhancing ice-ocean drag coefficient
 - o $au_{io} \sim Cd_{io}(extbf{u}_i extbf{u}_o)$, increasing Cd_{io} has a similar effect as decreasing U_o
- ✓ Tuning: 4) 2-yr salt restoring, $1.5 \times Cd_{io}$, & $\Delta U = U_a$ (over the open ocean)

- ✓ Tuning: 3) Enhancing ice-ocean drag coefficient (Cd_{io})
 - $\rightarrow \tau_{io} \sim Cd_{io}(\mathbf{u}_i \mathbf{u}_o)$, increasing Cd_{io} has a similar effect as $U_o = 0$
- ✓ Tuning: 4) 2-yr salt restoring, $1.5 \times Cd_{io}$, & $\Delta U = U_a$
 - \rightarrow 50% Increase of Cd_{io} still within the observed range

Simulation Summary & Challenges

- ✓ AMOC in JRA55-do simulation collapses with the default setup.
- ✓ Changing salinity restoring strength is easiest and justifiable
 - → 1-yr: too cold; 2-yr: AMOC still took weak
 - → May take many (~10) cycles to obtain stable AMOC
- ✓ Increasing Cd_{io} helps to maintain healthy AMOC (combined with stronger salinity restoring)
 - → 50% increase reasonable?
 - → Haven't tested in fully coupled simulations
 - → May lead to an inconsistency between forced and fully coupled configurations
- ✓ $\Delta U = U_a$ doesn't affect the AMOC strength, but appears to improve equatorial current systems (NECC)
- ✓ Other options considered
 - → Starting from different initial conditions (default: WOA13)
 - → Going back to CESM1 setups (eg., weak deep isopycnal mixing)

Final Remarks

- JRA55-do (v1.3) is ready for use
 - ✓ Finer temporal and spatial resolutions than the LY09
 - ✓ More self-consistent than LY09
 - ✓ Near real-time
 - ✓ Adjustments: updated reference data & time-dependent
 - ✓ Will complement/succeed LY09 for COREs/OMIP
- The description paper for the dataset (*Tsujino et al. 2018*) submitted to Ocean Modelling
- Compsets for JRA55-do will be available soon, once the model setup is finalized
- JRA55-do Repeat Year Forcing (RYF), equivalent to CORE-NYF, will be available soon