Adding coccolithophores to CESM

Kristen Krumhardt Ocean Working Group Meeting, January 12th, 2018

Acknowledgments: Nikki Lovenduski, Matt Long, Mike Levy & Keith Lindsay

Overview

- Background on coccolithophores
- Influence on the global carbon cycle, project goals
- Coccolithophore phytoplankton functional type
- New results: CESM simulations with coccolithophores (PI CO2 vs. present CO2)

>1000 cells/ml

https://visibleearth.nasa.gov/

Coccolithophores do both photosynthesis and calcification

Particulate Inorganic Carbon (PIC) shell Particulate Organic Carbon — (POC) inside

Chloroplast

Coccolith

vessicle

<u>PIC</u>

POC

Coccolithophores do both photosynthesis and calcification

Environmental modulation of growth and calcification

Red = included in CESM with coccolithophores

Environmental modulation of growth and calcification

Red = included in CESM with coccolithophores

CO₂

Growth rate

Krumhardt et al., 2017, Progress in Oceanography

Why parameterize explicit coccolithophores?

- Importance of calcification on ocean CO₂ uptake, carbon export to deep sea...
- Environmental modulation of growth and calcification (e.g., ocean acidification threatens pelagic calcifiers).
- How will coccolithophore growth and calcification change with anthropogenic climate change?

Marine primary production in CESM: 3 PFTs

1) Small phytoplankton 2) Diatoms 3) Diazotrophs Prochlorococcus Coccolithophores Image: Coccolithophores Image: Coccolithophores

Coccolithophore calcification is modeled as an implicit fraction of small phytoplankton PFT

+ many others

Putting coccolithophores into CESM

- Using MARBL (Marine biogeochemistry laboratory)
- Adding coccolithophores as a 4th PFT (explicit calcifier)

Coccolithophores in CESM: depth integrated CaCO₃ production

Surface CaCO₃ from satellite **MODIS annual average (mean 2002-2015)**

CESM with coccolithophores Globally integrated CaCO₃ Production = 1.53 Pg C yr⁻¹ (other estimates range from 0.8 to 2.4 Pg C yr⁻¹)

CaCO₃ production observations for validation

Reference	Global	Method
	calcification	
	$(Pg C yr^{-1})$	
7	2.4	Field calcification
8	>2.1	Combination
9	1.6 - 2.4	Satellite algorithm
10;5	0.29–0.7	Sediment traps,
		800–1000m
11;12	0.6 - 1.1	Alkalinity model
13	0.8 - 1.4	Models + alkalinity
		observations

Methods - CESM simulations with coccolithophores

Experiments:

↑CO₂

Temp Temp CO₂ / Temp

Simulation details:

- Ocean/Sea ice only
- "normal year" climate
- 1 degree resolution

Methods - CESM simulations with coccolithophores

Simulation details:

- Ocean/Sea ice only
- "normal year" climate
- 1 degree resolution

Results from 50-year simulations:

- Pre-industrial $CO_2 = 284.7$ ppm
- Present day $CO_2 = 400.0$ ppm

What is the effect of increasing CO₂?: Calcification

Pre-industrial CO₂

Present-day CO₂

Globally, a 8% increase in calcification.

What is the effect of increasing CO₂?: Coccolithophore primary production

Regional effects of increasing CO₂: North Atlantic and Southern Ocean

Conclusions and next steps

- Coccolithophore growth rates increase from PI CO₂ levels to present-day.
- Overall 8% increase in coccolithophore calcification (balance of positive and negative regional changes).

Next steps...

- Continue testing with higher CO₂ levels
- Simulations with increased temperature
- Simulations with *both* increased CO₂ and temperature

Thanks for your attention!

Temperature influence on coccolithophore growth rate

Preindustrial CO₂

Oct 🎜

Nov.

N limited P limited Fe limited SiO₃ limited C limited

Jar

Present-day CO₂

G1850ECO.T62_g17.cocco_final4

Current small phytoplankton parameterization in CESM

Photosynthesis by small phytoplankton Grazing Change small Aggregation $\frac{d(Sc)}{dt} = P_s - G_s - M_s - A_s$ phytoplankton carbon over time Growth rate Small **Photosynthesis** $= \mu_s \cdot S_c - S_c - S_c$ P_{s} by small phytoplankton

Small phytoplankton growth rate

Max growth rate = 5 d⁻¹

$$\mu_{s} = \mu_{max} \cdot L_{t} \cdot L_{Vs} \cdot L_{Is}$$

$$\uparrow$$
Temperature
limitation
$$(N, P, Fe)$$

$$\lim_{t \to 0}$$

$$\lim_{t \to 0}$$