

Jiang Zhu^{1,*} (jiazhu@umich.edu)

Collaborators: Zhengyu Liu², Esther C. Brady³, Bette L. Otto-Bliesner³, Shaun A. Marcott¹, Jiaxu Zhang⁴, Xianfeng Wang⁵, Jesse Nusbaumer⁶, Tony E. Wong⁷ Alexandra Jahn⁷ and David Noone⁸

¹UW-Madison; *NOW AT: University of Michigan;

²Ohio State University; ³NCAR; ⁴Los Alamos National Laboratory; ⁵Nanyang Technological University; ⁶NASA; ⁷University of Colorado Boulder; ⁸Oregon State University

CESM Paleo Working Group Meeting, Austin, March 1, 2018

Deciphering the δ^{18} O signal in terrestrial records

Deciphering the δ^{18} O signal in terrestrial records

Climatic Signal (indirect)

High latitude δ^{18} O and the "temperature effect"

- O Moisture sources (e.g., Charles et al., 1994; Liu et al., 2012)
- O Atmospheric circulations (e.g., Hendricks et al., 2000; Noone, 2008)
- Sea-ice margin positions (Sime et al., 2013)
- o Post-depositional processes (e.g., Town et al., 2008)

Low latitude $\delta^{18}O$ and the "amount effect"

- Source composition and transport trajectory (Lewis et al., 2010; Liu et al., 2014; Rozanski et al., 1993; Yuan et al., 2004)
- O Seasonality (Cheng et al., 2009)
- O Cloud type and processes (Aggarwal et al., 2016; Moore et al., 2014; Risi et al., 2008)

Non-Climatic Signal

The direct meltwater effect

A non-climatic δ^{18} O signal: the direct meltwater effect (DME)

<u>DME</u>: Super depleted meltwater
(-30‰) propagates throughout the hydrological cycle, *without involving climate alterations*.

• Studied qualitatively in a much lesser extent (Werner et al., 2000; LeGrande and Schmidt, 2008)

o Important questions remain

- 1. How large is the DME compared with climatic effects?
- 2. How does the DME depend on details of the freshwater forcing?

Water isotope-enabled model and simulations

Water isotope-enabled CESM (iCESM)

- ~2° (atm,Ind) & ~1° (ocn, ice)
- o Nusbaumer et al., 2017
- o Wong et al., 2017
- o Zhang et al., 2017
- o Zhu et al., 2017
- o Brady et al., in preparation

Experiments

	Experiment	FWF (Sv)	δ ¹⁸ O of meltwater	Location	Length
	piControl				500
	WH025a	0.25	-30‰	N. Atlantic	300
	WH025aC	0.25	0‰	N. Atlantic	300

Test magnitude and location (100 yrs)

- o WH010a & WH010aC (N. Atlantic)
- o WH050a & WH050aC (N. Atlantic)
- o WH100a & WH100aC (N. Atlantic)
- WH050b & WH050bC (Gulf of Mexico)
- WH050c & WH050cC (Weddell Sea)

Performance of simulating water isotopes

Results: the direct meltwater effect (0.25 Sv, 300 years)

Results: dependence on the duration of the FWF (0.25 Sv, 300 years)

Results: dependence on the magnitude and location of the FWF

Results: important for lots of regions (0.25 Sv, 300 years)

Mechanism: meltwater decrease $\delta^{18}O_{sw}$ of moisture source regions

Water tagging experiments

	Northern N. Atl. (30–70°N)	Subtropical N. Atl. (10–30°N)	Equatorial Atl. (10°S-10°N)	Subtropical S. Atl. (10-30°S)
Greenland precip.	51%	7%	<1%	<1%
eastern Brazil precip.	1%	2%	13%	50%

Conclusions and implications

- The direct meltwater effect makes up 15-35% of the δ¹⁸O signals in precipitation in Greenland and eastern Brazil for large meltwater events.
- The direct meltwater effect *increases with the duration and magnitude* of the freshwater forcing, and is location dependent.

- Caution should be taken when interpreting δ^{18} O as climatic signal during strong meltwater events.
- Detailed history of meltwater events is needed!

Geophysical Research Letters

RESEARCH LETTER

10.1002/2017GL076253

Key Points:

 A portion of the δ¹⁸O signal in land-based paleoclimate proxies can be attributed to the direct meltwater effect instead of climatic changes
The direct meltwater effect can make up 15-35% of the δ¹⁸O signals in precipitation in Greenland and eastern Brazil for large meltwater events
The direct meltwater effect increases with the magnitude and duration of

with the magnitude and duration of the freshwater forcing and is sensitive to location and shape dependent

Supporting Information:

Supporting Information S1

Investigating the Direct Meltwater Effect in Terrestrial Oxygen-Isotope Paleoclimate Records Using an Isotope-Enabled Earth System Model

Jiang Zhu^{1,2} (b, Zhengyu Liu³ (b), Esther C. Brady⁴ (b), Bette L. Otto-Bliesner⁴ (b), Shaun A. Marcott⁵ (b), Jiaxu Zhang⁶ (b), Xianfeng Wang⁷ (b), Jesse Nusbaumer⁸ (b), Tony E. Wong⁹ (b), Alexandra Jahn¹⁰ (b), and David Noone¹¹ (b)

¹Department of Atmospheric and Oceanic Sciences and Center for Climatic Research, University of Wisconsin-Madison, Madison, WI, USA, ²Now at Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA, ³Atmospheric Science Program, Department of Geography, Ohio State University, Columbus, OH, USA, ⁴Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, USA, ⁵Department of Geoscience, University of Wisconsin-Madison, Madison, WI, USA, ⁶CCS-2 and CNLS, Los Alamos National Laboratory, Los Alamos, NM, USA, ⁷Earth Observatory of Singapore and Asian School of the Environment, Nanyang Technological University, Singapore, ⁸NASA Goddard Institute for Space Studies, New YorkNY, USA, ⁹Department of Computer Science, University of Colorado Boulder, Boulder, CO, USA, ¹⁰Department of Atmospheric and Oceanic Sciences and Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA, ¹¹College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA

Thank you for your attention!

Jiang Zhu (jiazhu@umich.edu)