Evaluation of High-Resolution Simulations: Inferences from MOLES & SMOLES

Brodie Pearson, Qing Li, Jenna Palmer (Brown), Scott Bachman & Frank O. Bryan (NCAR), Roy Barkan & J. McWilliams (UCLA), Jun Choi & Annalisa Bracco (GaTech), E. D'Asaro (UW)

Baylor Fox-Kemper Brown University Ф

Ð,

Traditional QG Turbulence View:

Support: CARTHE (GOMRI), Key Research Program of China (2017YFA0604100), NSF OCE-1350795 and ONR N00014-17-1-2963

Large Eddy Simulations: Boundary Layer Turbulence: Regardless of forcing becomes isotropic 3D forward cascade on small enough scales.

Wind-Only

Langmuir (Wind & Waves)

Qing Li & BFK, 2018: Structures of Langmuir Turbulence. In prep. LES of Boundary Layer Turbulence: Regardless of forcing becomes isotropic 3D forward cascade on small enough scales.

Qing Li & BFK, 2018: Structures of Langmuir Turbulence. In prep.

GLAD Obs: Isotropic Forward Cascade from 30km?

FIG. 7. (a) Second order longitudinal structure function versus separation distance showing Richardson-Kolmogorov, $r^{2/3}$, energy cascade scaling for GLAD data and Kraichnan, r^2 , enstrophy cascade scaling for AVISObased synthetic trajectories. (b) Sign-reversed third order longitudinal structure function scaled by r for the GLAD observations.

140TW (global)/(1.4 10²¹ kg)=10⁻⁷ W/kg Winds: ~20TW global Tides: 3.5TW global

D'Asaro et al (2011): Enhanced @ Fronts: 10⁻⁵ to 10⁻⁶ W/kg

Evidence of a forward energy cascade and Kolmogorov self-similarity in submesoscale ocean surface drifter observations

Andrew C. Poje, Tamay M. Özgökmen, Darek J. Bogucki, and A. D. Kirwan, Jr.

What's really happening in models in the QG regime?

Examine energy cycling/cascades in global, 10km
 resolution simulations (Mesoscale Ocean LES: MOLES)
 (mesoscale & equatorial submesoscale permitting)

- Determine if there is evidence of forward energy cascade across horizontal scales
 (i.e., dissipation of EKE by horiz. friction)
- · See if result is sensitive to subgrid scheme
- · CAN'T BE ISOTROPIC:

Depth < Horizontal Grid Spacing

B. Pearson and BFK, 2018: Lognormal turbulence dissipation in global ocean models. Physical Review Letters. In press.

B. Pearson, BFK, S. D. Bachman, and F. O. Bryan, 2017: Evaluation of scale-aware subgrid mesoscale eddy models in a global eddy-rich model. Ocean Modelling, 115:42–58.

S. D. Bachman, BFK, and B. Pearson, 2017: A scale-aware subgrid model for quasi- geostrophic turbulence. Journal of Geophysical Research–Oceans, 122:1529–1554.

S. D. Bachman, BFK, and B. Pearson, 2017: A scale-aware subgrid model for quasigeostrophic turbulence. Journal of Geophysical Research–Oceans, 122:1529–1554.

B. Pearson, BFK, S. D. Bachman, and F. O. Bryan, 2017: Evaluation of scale-aware subgrid mesoscale eddy models in a global eddy-rich model. Ocean Modelling, 115:42–58.

ш

ወወ

Mesoscale Ocean LES (MOLES): QGLeith

MITgcm in Idealized Domain. Resolutions from coarse to very fine in terms of resolving deformation radius High vert. resolution

S. D. Bachman, BFK, and B. Pearson, 2017: A scale-aware subgrid model for quasi- geostrophic turbulence. Journal of Geophysical Research–Oceans, 122:1529–1554.

Mesoscale Ocean LES (MOLES): QGLeith

MOLES: Global dissipation

A (weak) forward energy cascade that's Lognormally

distributed

atitude

Latitude

B. Pearson and BFK, 2018: Lognormal turbulence dissipation in global ocean models. Physical Review Letters. In press.

Lognormal Dissipation Consequences?

- Lognormal dissipation (Yaglom, '66) results in a variable that is forward cascaded, intermittently, but always forward. Pearson & BFK extend to QG Pot'l Enstrophy cascade.
- Multiplicative, not additive, stochastic parameterizations tend toward log-normality
- When measurements of energy are related to the global mean: consider the log of the measurements—that's what's normally and symmetrically distributed about the mode.
- The mean, or integrated dissipation, are dominated by only a few regions (here 90% happens in 10% of area)

B. Pearson and BFK, 2018: Lognormal turbulence dissipation in global ocean models. Physical Review Letters. In press.

CARTHE:

Consortium for Advanced Research on the Transport of Hydrocarbons in the Environment

"Lagrangian ocean analysis: fundamentals and practices", Erik van Sebille et al. (2017)

- Trajectories for virtual particles map out pathlines of the velocity field [...] Statistics of the trajectories then define particle pathways and their associated time scales."
- But, do they? How biased are these statistics
 because they are "observed" on Lagrangian
 trajectories?
- Floes in Eddies: How different are the areabased statistics, e.g., ice concentration to ice volume because the floes are bunched up in convergence zones?

CARTHE / LASER Strategy

Use massive (~1000) surface drifter arrays as surrogate for oil

323 Drifters 1 km grid

Slide: E. D'Asaro

DIVERGENCE from plane fit of velocity from all drifters in a 2km radius

Three-Dimensional Circulation at the Zipper

Slide: E. D'Asaro

GLAD: Isotropic Forward Cascade from 30km?

FIG. 7. (a) Second order longitudinal structure function versus separation distance showing Richardson-Kolmogorov, $r^{2/3}$, energy cascade scaling for GLAD data and Kraichnan, r^2 , enstrophy cascade scaling for AVISObased synthetic trajectories. (b) Sign-reversed third order longitudinal structure function scaled by r for the GLAD observations.

140TW (global)/(1.4 10²¹ kg)=10⁻⁷ W/kg Winds: ~20TW global Tides: 3.5TW global

D'Asaro et al (2011): Enhanced @ Fronts: 10⁻⁵ to 10⁻⁶ W/kg

Evidence of a forward energy cascade and Kolmogorov self-similarity in submesoscale ocean surface drifter observations

Andrew C. Poje, Tamay M. Özgökmen, Darek J. Bogucki, and A. D. Kirwan, Jr.

Lagrangian vs. Eulerian Cascades

- Regional Ocean Modeling System (ROMS) operating at 500m resolution (climatology)
- Synthetic trajectories were launched within and advected using the Lagrangian TRANSport Model (LTRANS) v.2b
- The launch patterns, locations of deployment, and time of year all mimic GLAD (summer, West) and LASER (winter, East)
- Here Eulerian=model grid sampling & Lagrangian=sampling at trajectory locations

J. Palmer, BFK, R. Barkan, A. Bracco, J. Choi, J. C. McWilliams, 2018: Impacts of convergent zones on structure function statistics in the Gulf of Mexico. Geophysical Review Letters. In prep.

Eulerian vs. Lagrangian: L. is biased toward sampling convergent fronts \$tc.

 $D_L = \overline{\left(\left[\mathbf{u}(\mathbf{x} + \mathbf{r}) - \mathbf{u}(\mathbf{x})\right] \cdot \mathbf{r}/|r|\right)^2}$

In the Barkan et al., Choi et al. ROMS (500m) models, we compare Eulerian (solid) statistics to Lagrangian (dashed & dotted)

O(3x) larger Lagrangian than Eulerian 2nd Order SF in Winter when submesoscale is strong & resolved

Lagrangian slope is shallower— More like Kolmogorov-Richardson than unbiased Eulerian version.

J. Palmer, BFK, R. Barkan, A. Bracco, J. Choi, J. C. McWilliams, 2018: Impacts of convergent zones on structure function statistics in the Gulf of Mexico. JPO. In prep.

Eulerian vs. Lagrangian: L. is biased toward sampling convergent fronts \$tc.

J. Palmer, BFK, R. Barkan, A. Bracco, J. Choi, J. C. McWilliams, 2018: Impacts of convergent zones on structure function statistics in the Gulf of Mexico. JPO. In prep.

MOLES & drifters: Conclusions

Subgrid scheme matters for leading order EKE budget! Dissipation of energy and QGPE is extremely localized (90% of total in 10% of regions)

Kinetic energy is dissipated (weakly) within QG Pot'l Enstrophy Cascade

50x smaller sink of EKE than Poje et al. (lognormal: +1.5 st.dev., Lagrangian biased by 2x to 8x): Known Unknowns: Lognormality tail. Drifters biased toward fronts.

Unknown Knowns: Concentrate EKE into OSBL? Wind work underestimated.