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– Separate the climate system into disciplinary components
– Interchange different component models with minimal 

changes to other components

• Achieve Social Harmony
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Seeking Greater Concurrency
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Objectives of Climate Model Couplers
• Manage Complexity

– Separate the climate system into disciplinary components
– Interchange different component models with minimal 

changes to other components

• Achieve Social Harmony
– “Good fences make good neighbors”

• Computational Efficiency
– Find concurrency  - “Many hands make light work”

• Achieve physically correct behavior of the 
coupled system dynamics
– Avoid coupled instabilities



COUPLING TIME-STEPPING 
STRATEGIES

Key Coupler Considerations:
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A simplified history of sea-ice ocean coupling
• Rigid lid ocean models could not handle divergent flows or mass 

loss or gain at the surface (1970s).
Problem – sea-ice grows by taking fresh water from the ocean
Solution – use a virtual salt flux to get the equivalent brine rejection

Advantages – Massless sea ice does not exert pressure on the ocean or 
participate in dynamics; Sea ice can be treated as a completely independent 
component.

Liabilities – Freezing & melting at different S give inconsistent forcing

• Free surface ocean models allowed climate models to return to the 
“natural boundary condition” (~2000).
– Z-coordinate models still require limits on ice pressure:
– Artificial Stommel-Goldsborough circulation results where the pressure-

limited ice melts; sea-ice grounding is not permitted.

• Z*-coordinates & other ocean model developments allow for 
increasingly realistic sea-ice models… (Today)

WaterSalt SFF −=

SfcOceIce zgOP ∆< ρ)5.0(



Traditional (GFDL) Approach to Ocean/Ice Coupling

• Sea-ice (SIS or SIS2) is advanced implicitly with the atmosphere, 
for skin temperatures consistent with atmosphere.

• Ocean  (MOM4, MOM5, GOLD or MOM6) is forced by 
prescribed fluxes from the sea-ice.

• Air-sea fluxes are based on ocean properties from 1 (sequential) or 
2 (concurrent) time-steps before they are applied to the ocean.

• Ice displacement is similarly lagged.
• Icebergs are point masses embedded in the sea-ice.
• Ice can displace a limited thickness of ocean; more than ~2-5 m of 

ice “levitates” to avoid numerical problems.

Ocean model (MOM6), sea-ice (SIS2), icebergs, and GFDL coupler 
are all being restructured to allow this approach to be revised.
These revisions may provide a template for consideration in CESM.



Evidence of Lagged Stress-Inertial 
Coupling Instability in Sea-Ice Thickness

Hallberg (2014, Clivar Exchanges)Sequentially coupled data-driven ice-ocean model



Symptoms of problems with GFDL’s 
traditional coupling approach

• Numerical instability of high resolution coupled models, especially 
in Spring when thick sea-ice becomes unlocked from the pack of 
thin ice.

• Avoiding “surfing” icebergs and marginal sea-ice requires 
“levitation” of the ice

• “Levitation” in turn introduces undesirable consequences
– Icebergs and sea-ice can not ground
– Unlimited growth of sea-ice (to 1000s of m) in certain 

embayments
– No dynamic ice-sheet coupling, or else tabular icebergs must be 

treated differently from ice-shelves
• Short coupling time-step required at higher resolutions 

– E.g., 1200 s for GFDL’s ¼° CM4 with concurrent coupling



Numerical Ice-Ocean Coupling Instabilities
1. Lagged stress / inertial oscillation instability
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Explosive Sea-Ice Growth as a Manifestation of 
a Sea Ice-Ocean Coupling Instability
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Numerical Ice-Ocean Coupling Instabilities
1. Lagged stress / inertial oscillation instability

2. Thermal forcing instability

3. Gravity wave instability
– Sea-ice and icebergs participate in barotropic gravity waves
– Stability analysis analogous to split-explicit ocean time stepping 

(e.g., Hallberg, 1997)

– Instability growth rate proportional to the sea-ice external 
gravity wave CFL ratio based on the coupling time step.
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Ice in a Greenland Fjord (Rink Isbrae)

(Photo Credit: R. Hallberg 2015 pretending to be an observationalist.)



A coupled gravity-wave toy model
2-layer (sea-ice & ocean) linear nonrotating flat-bottom 
channel flow with no viscosity.
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A coupled gravity-wave toy model
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Sequential coupling:
Marginally stable if waves are treated 
analytically in each component.

Concurrent forward coupling:
Unconditionally unstable, growth rate:
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Damping from an ice-pack can locally stabilize the instability.



Impacts of “Levitating” Ice
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Credit: NASA/Dick Ewers

60 m

500 m below 
ocean surface



A NEW ICE / OCEAN COUPING
STRATEGY
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A Subcomponent Decomposition of Sea-ice 
Processes

• Fast thermal processes (almost immediate)
– Surface skin temperature calculation
– Determines atmospheric boundary layer stability

• Slow thermodynamic processes (hours to years)
– Melting, Freezing
– Ice salinity changes

• Dynamics and Rheology (minutes to days)
– Ice-pack stress fields and momentum budget

• Transport and ridging (hours to days)



Concurrent Coupling in more detail
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A solution to the ice-ocean coupling issues?
The (SIS2) sea-ice is being embedded in MOM6, while the 
atmosphere interacts with its own estimate of the sea ice state.

AMIP runs are effectively unchanged!
• Atmosphere calculates air-sea and air-ice fluxes implicitly (as before), but 

based on an ice-surface state provided by the slow-ice / ocean PEs
• Fast fluxes are conservatively recalculated to update the slow ice state.

– Fluxes to ice categories are based on ice state and atmospheric boundary layer
– Fluxes to the ocean are corrected to match the total fluxes found by the atmosphere

• Slow ice thermodynamics are tightly coupled with ocean thermodynamics
• Tight coupling (cycling or embedding) of ice and ocean dynamics
• Sea ice and icebergs dynamically participate in the ocean’s barotropic solver 

with embedding – no gravity wave instability
• Ice-ocean dynamic and thermodynamic coupling can be implicit on both 

sides, allowing grounding of icebergs and sea ice – NO LEVITATION!
• Ice shelf and tabular iceberg thermodynamics treated equivalently
• Icebergs can interact with the ocean over their full depth range
• Add ~1 m “mud-layer” to avoid thermal instabilities during wetting & drying



Q(SST,Ti,Ta), τ(uo,ui,ua)
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Conservatively Recalculating Solar Heating
Increasing sea-ice area or albedo  Apply excess reflected shortwave to ocean

Decreasing ice area or albedo  Reduce incident shortwave to ocean

Previous ice state Current ice state Shortwave applied to
current ice state

Previous ice state Current ice state Shortwave applied to
current ice state



Stable and Quasi-Conservative Thermal Coupling:
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• With only a single component, this is simply implicit flux calculation.
• Essentially a linearized variant of the “fast-physics” implicit coupling 

between the land/ice and atmosphere.
• Atmosphere and ice/ocean could each calculate air-ocean/ice fluxes
• Conservation is lagged, analogous to concurrent coupling



Considerations in Revising Coupling
• To correct coupling problems, seek verisimilitude 

before palliative approximations
• Base coupling algorithms on understanding the 

dynamics of the coupled system
• Defy disciplinary component boundaries as necessary
• Respect tradition and social harmony, but not to the 

point of compromising the dynamics
• Algorithm changes primarily for computational 

efficiency need to be carefully analyzed, especially in 
extreme situations



Consequences of Embedded / Concurrent 
Ice Coupling• Dramatic revisions to sea-ice code structure

– Separate sea ice model into 4 distinct pieces, while also permitting the 
sea ice to used as a single component (Done for SIS2, not Icepack?)

– Revise of sea-ice code for consistency with ocean code to permit 
embedding ice dynamics in ocean  (Done for SIS2 and MOM6)

• Reformulate coupler for new call sequence options
– Partially complete/underway for GFDL coupler

• Separation of dynamic and thermodynamic interfaces to ocean
– Also retaining extant interfaces and solutions
– Partially complete/underway for MOM6

• To embed: incorporate ice dynamics solver into ocean model
– Dramatic changes to ocean & ice dynamic cores, while preserving the 

option to generate existing solutions and behavior
– Open questions about how to actually handle transport interactions
– Not started yet for MOM6/SIS2/icebergs
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