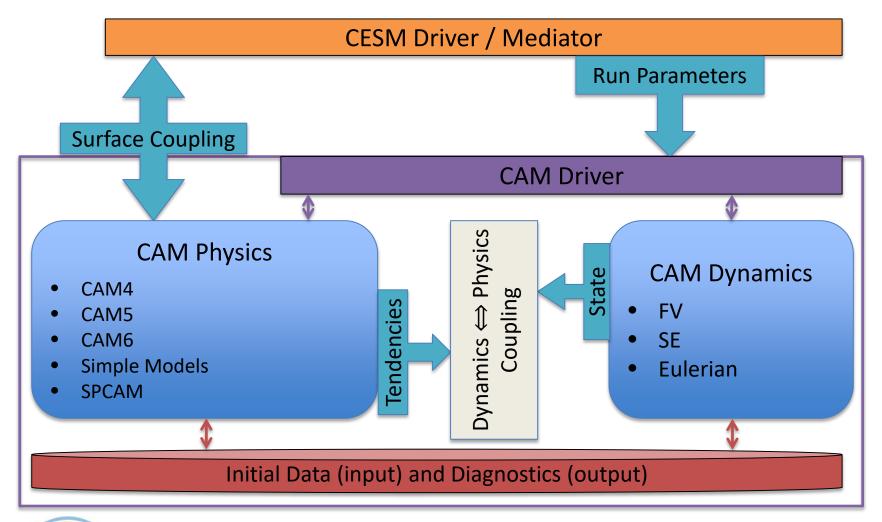
SEWG: 2018-02-27

A Community Physics Framework for CAM

Michael Duda, Dave Gill (MMM) **Steve Goldhaber**, Mariana Vertenstein, Francis Vitt (CGD)


Outline

Outline

- Brief overview of CAM6 infrastructure changes
- Some challenges ahead for CAM and atmospheric modeling
- Introduction to the Community Physics Framework

CAM6 Architecture Overview

CAM6 Architecture and Infrastructure Improvements

- Better interfaces and tools for dycore development
 - Reimplementation of diagnostics library
 - Cleaner separation no dycore-specific code in diagnostics infrastructure
 - Simple physics options and analytic DCMIP initial conditions for dycore development
- Limited capability to define new, simple physics suites
- Ability to run physics on different grid (CAM-SE only)
- Ability to run part of physics package using sub-grid-scale columns

So what's the problem?

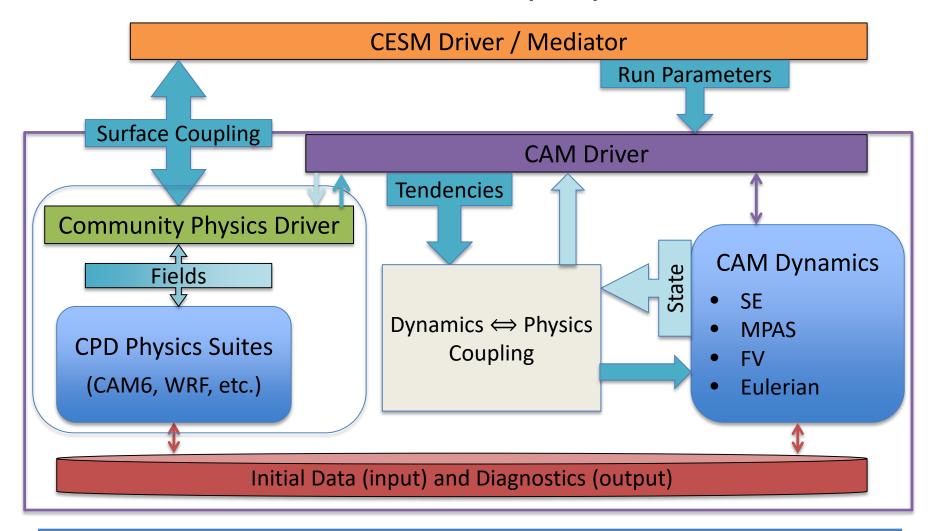
CAM6

Requirements for CAM Physics -- after CAM6

- Support for new physics suites (packages) while maintaining ability to run older suites
 - Interoperable development of new unified physics suites
 - Ability to continue to run mainline CAM physics suites
- Interoperability between NCAR atmosphere models (WRF, MPAS, CAM)
 - For example, run WRF physics inside CAM without any changes to parameterizations or suite definition
- Ability to run chemistry and/or physics on different grid from dynamics

What is wrong with what we have?

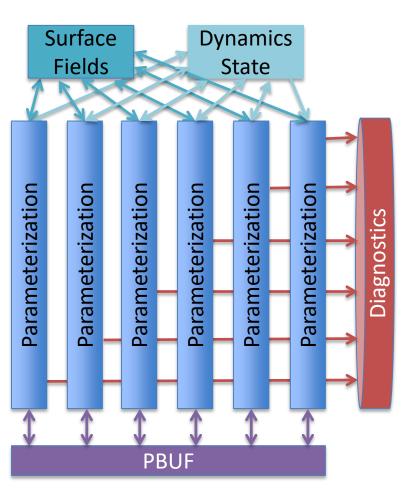
- CAM physics parameterizations depend on several CAM-specific data structures (physics_state, physics_tend, surface fields in, surface fields out, PBUF). Other models have very different state data structures.
 - This inhibits portability between models.
- physpkg (tphysbc, tphysac) logic has combined implementation of CAM3, CAM4, CAM5 & CAM6 including several options for CAM5 and CAM6.1
 - Increases difficulty in experimenting with new physics parameterizations and suites.

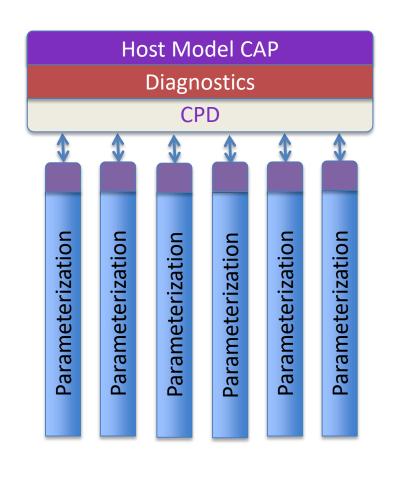


What is the Community Physics Driver / Framework?

- Multi-model effort to build flexible physics-package driver with a common, model-independent interface
- Replaces hardcoded, complex logic with a data-driven schedule of parameterization calls
- Handles data flow to and from host model as well as between parameterization calls
- Recently funded for implementation by CGD (CAM), MMM (WRF & MPAS), ACOM (Chemistry package)
- Goal is to also be compatible with NOAA (NGGPS, CCPP)

CAM6 with Community Physics Driver




$CAM6 \Longrightarrow CPF$

CAM6 Physics

VS.

CPF

Parameterization

CAM6 Physics Parameterization

VS.

CPD

Gather data from state, previous tendencies, & physics buffer □

Update state, tendencies, physics buffer & diagnostic output

Parameterization portable layer (all I/O through Fortran arrays)
Examples: microphysics, cloud physics, radiation

Parameterization Cap (Fortran code generated from Parameterization metadata)

Parameterization portable layer (all I/O through Fortran arrays)
Examples: microphysics, cloud physics, radiation

Summary I

- Physics parameterizations and suites can be shared among models without modification.
- The Community Physics Framework creates a uniform data interface for parameterization inputs and outputs.
- Shared infrastructure lowers coding, testing, and maintenance costs.
- Well-documented interfaces makes it easier for the community to contribute usable parameterizations.
- Framework helps to manage model complexity.

Parameterization CAP

! \section arg_table_held_suarez_1994											
!	var	standard name	description	units	rank	type					
!											
!	ncol	horizontal_loop_extent	horizontal loop extent	index	0	integer					
!	pcols	horizontal_dimension	horizontal dimension	index	0	integer					
!	pver	vertical_dimension	vertical layer dim	index	0	integer					
!	delt	time	physics time step	s	0	real					
!	pmid	air_pressure	midpoint pressure	Pa	2	real					
!	u	eastward_wind	zonal wind speed	m s-1	2	real					
!	V	northward_wind	meridional wind speed	m s-1	2	real					
!	t	air_temperature	temperature	K	2	real					
!	du	tendency_of_eastward_wind	zonal wind tendency	m s-2	2	real					
!	dv	tendency_of_northward_wind	meridional wind tend.	m s-2	2	real					
!	ds	tendency_of_air_temperature	_due_to_radiative_heating								
!			heating tendency	K s-1	2	real					

Parameterization CAP

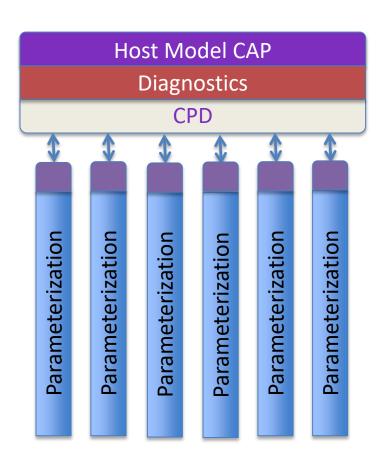
! \section arg_table_held_suarez_1994										
! var	standard name	description	kind	intent	opt.					
!										
! ncol	horizontal_loop_extent	horizontal loop extent		in	F					
! pcols	horizontal_dimension	horizontal dimension		in	F					
! pver	vertical_dimension	vertical layer dim		in	F					
! delt	time	physics time step		in	F					
! pmid	air_pressure	midpoint pressure	kind_phys	in	F					
! u	eastward_wind	zonal wind speed	kind_phys	in	F					
! v	northward_wind	meridional wind speed	kind_phys	in	F					
! t	air_temperature	temperature	kind_phys	in	F					
! du	tendency_of_eastward_wind	zonal wind tendency	kind_phys	out	F					
! dv	tendency_of_northward_wind	meridional wind tend.	kind_phys	out	F					
! ds	tendency_of_air_temperature	_due_to_radiative_heating								
!		heating tendency	kind_phys	out	F					

Physics Suite

```
<suite name="Held Suarez">
 <init>held suarez init</init>
 <ipd part="tphysbc">
  <subcycle loop="1">
   <scheme>check_energy_fix</scheme>
   <scheme>physics_update</scheme>
   <scheme>held suarez tend</scheme>
   <scheme>physics update</scheme>
  </subcycle>
 </ipd>
</suite>
```


What will change

- Parameterizations will not have a custom interface (which is different for each host model). This will be replaced with a metadata header (written as a Fortran comment block) which describes the interface needs of the parameterization.
- Physics suites will not be written as hand-coded Fortran logic. This
 will be replaced with a dataflow description of the suite's process
 ordering.


What will not change

The portable core of each parameterization will not have to change

Testing

Using the CPF for parameterization development

- Parameterization developers need an easy way to run and test their code on a laptop.
- Replace Host Model CAP with standalone test driver
- Test driver provides methods for providing input data
- Test driver can capture parameterization output:
 - to a file for offline study
 - to compare to expected output

Summary II

- CPF will improve data provenance by requiring standard metadata for every field
- The interface code and driver loop will be generated, lowering redundant code and opportunities for error
- CPF can provide development / testing framework
- Code generation can be flexible to accommodate the needs of different models.
- Framework helps to manage model complexity

CPF development plan

- CPF funded 2018-01-30
- Plan is to demonstrate a single physics suite focused on future, unified physics research ideas
- Software team: Cheryl Craig, Michael Duda, Dave Gill, Steve Goldhaber, Mariana Vertenstein, Francis Vitt
- Requirements definition nearly complete
- Design to begin in March
- CPF demonstrated in CAM, MPAS, and WRF by end of year

Questions

Thank You

• Questions?

Brief CPD history to date

- Early 2016: GMTB begins work on Common Community Physics Package (CCPP).
- May 2017: Jim Hurrell asks small software team for proposal on unified infrastructure for atmospheric modeling at NCAR. Whitepaper delivered at end of July.
- November 2017: CPD section of unified infrastructure submitted as proposal for reinvestment funds.
- Q1 2018: CCPP v1 released demonstrating GFS physics running in FV3 and in GMTB single column model.

