Reduced precision microphysics parameterizations in CAM

John Dennis, Dan Milroy, Andrew Gettelman

Do <u>all</u> calculations in CAM/CESM need to be performed in double precision?

History/Motivation

Historically:

- Climate models: double-precision
 - Small per MPI rank problem size means less cache pressure
 - 4-byte calculations cost same as 8-byte
 - Needed for conservation
 - Simpler
- Weather models: single -precision
 - Large per MPI rank problem size means significant cache pressure → advantage to reducing size of variables

Now:

 Vector instruction sets means that single-precision rate is potentially 2x that of double-precision

Computational & Information Systems Laboratory

What are the implications of the use of single precision in CAM/CESM?

Potential implications of single precision

- Is correctness maintained?
- Does it reduce code execution time?
- Does it negatively impact maintainability?

Approach

- Previous results:
 - WACCM implicit solver [kernel] \rightarrow 1.97x speedup
 - Solver was trivial to vectorize
 - Virtually no 'if' tests in computational kernel
- Want something more challenging!
 - Morrison Gettelman Microphysics version 2
 - Relatively expensive: ~5% of total CAM cost
 - Complex code with lots of 'if' tests
 - Extensive experience optimizing code base
 - Willing collaborator (KEY)

8.1328e-3*(10.**(-3.49149*(tboil/t(i)-1.))-1.)+ & log10(1013.246))*100. enddo

Vectorization is necessary!

Is correctness maintained?

- Did not pass CESM verification test
 - The changes are statistically distinguishable from natural variability
- Does appear to pass initial evaluation by Andrew.

Does it reduce execution time?

- MG2 calculation only
 - Cheyenne
 - Kernel: R4 \rightarrow 1.35x speedup versus R8
 - In CAM: R4 \rightarrow 1.22x speedup versus R8
- Current R8→R4 speedup is equivalent of Broadwell to Skylake speedup.
- Variation across different MPI ranks:
 - 2x speedup on a few execution paths
 - Additional execution paths could be optimized?
- Overall impact on CAM: ~ 0.5%
 - Very large overhead in actually calling MG2 from CAM
 - Other parameterizations in CAM are significantly more expensive (CLUBB)

Extreme vectorization of the CESM2 MG2 kernel

Does it negatively reduce maintainability?

- Single point to switch from 8-byte to 4-byte calculations ⁽ⁱ⁾
- Multiple entry points into modified code
 - Certain MG2 utility routines are called outside main subroutine
 - Saturation vapor pressure calculations called from multiple locations in CAM
 - Need to include both 4-byte, 8-byte, vector and scalar versions of numerous subroutines ☺
 - Constants: Maintain separate 8-byte and 4-byte versions or type conversion of 8-byte constant?

Recommendation for <u>new</u> parameterizations

- Simplified support for reduced precision will be in next version of CESM
- Develop new parameterization that can be switch between single and double precision
 - Focus on 4-byte version
 - Scientific justification for 8-byte
- Think of calculation on groups of points not single model grid-point

Conclusions/Future work

- Use of single-precision does not break correctness
- Achieves speedup comparable to next generation of processor
- Does currently impact code maintainability due to the call structure of CAM
- Should future parameterizations be singleprecision?

Questions?

dennis@ucar.edu

