Cloud phase and relative humidity distributions over the Southern Ocean in austral summer based on in situ observations, CAM5 and CAM6 simulations

Minghui Diao¹, John J. D'Alessandro², Ching An Yang¹

¹Department of Meteorology and Climate Science, San Jose State University, ²University of Oklahoma,

Chenglai Wu^{3,4}, Xiaohong Liu⁴,

Andrew Gettelman⁵, Jorgen B. Jensen⁵, Britton Stephens⁵

³Chinese Academy of Sciences, ⁴University of Wyoming, ⁵National Center for Atmospheric Research NSF ORCAS, SOCRATES campaign science team

SAN JOSE STATE

UNIVERSITY

National Science Foundation

1677F =

ČESM Atmosphere Working Group Meeting, February 21, 2019, NCAR, Boulder

Impacts of Southern Ocean clouds on Earth's climate

1. What methods do we use to compare in-situ data with GCM simulations?

2. Do collocated, nudged simulations match better with observations than free-running ones?

3. What are the implications for cloud microphysics parameterization?

Data set and instrumentations

NSF O₂/N₂ Ratio and CO₂ Airborne Southern Ocean (ORCAS) Study

- Jan 15–Feb 28 2016, Punta Arenas; 50°W–92°W and 30°S–75°S
- 18 flights; ~95 hr; in-cloud 7.6 hr, restricted to T < 0°C; Horizontal resolution: ~100 250 m</p>

Vertical Cavity Surface Emitting Laser (VCSEL) hygrometer

- Near infrared; use 1 Hz; Accuracy $\leq 6\%$; Precision $\leq 1\%$ (Zondlo *et al.* 2010)
- Combine with ±0.3 K temperature uncertainties, RHice and RHliq uncertainties are 7.5%–6.5% and 10.4%–6.4% for -69°–0°C, respectively.

Cloud probes

- (1) Cloud droplet probe (**CDP**) (2–50 μ m);
- (2) Fast-Two dimensional cloud (Fast-2DC) probe (67.5–1600 μm);
- Verifications: KING hotwire probe, Rosemount Icing detector (RICE)

Cloud phase identification method based on in-situ aircraft-based observations

Method is modified for GV observations in ORCAS, developed based on previous methods: Korolev et al. (2003) Cober et al. (2001) McFarquhar et al. (2007)

D'Alessandro, J., <u>M. Diao</u>, C. Wu,, X. Liu, B. Stephens, and J.B. Jensen, "Cloud phase and relative humidity distribution over the Southern Ocean based on in-situ observations and global climate model simulations", *Journal of Climate, accepted, 2019.*

Time series in RF17 with collocated CAM5 simulation output

Phase separation correlates well with RICE indicator and is verified via Fast-2DC imagery

• CAM5 nudged simulation shows missing supercooled liquid water (SLW)

Time series in RF17 with collocated CAM5 simulation output

Comparisons of cloud phase frequency distribution in observations and simulations

Comparison set-up	"Scale-aware" comparison	Cloud phases: ratio of LWC / (LWC+IWC)	Cloud microphysics quantities		
Observations in ORCAS campaign (1 – 200 s)	 0.1 – 0.25 km to 20 – 50 km from near surface to UT/LS 	≤ 0.1 (ice) 0.1 – 0.9 (mixed-phase) ≥ 0.9 (liquid) (similar to Korolev et al. 2003)	Similar "grid-mean quantities"		
CAM5 (nudged and free- running) (MG08, PB09, MAM3) 0.47°×0.63°	14 – 70 km at 30°S–75°S	The same	Grid-mean quantities : "LWC", "IWC", "NUMLIQ", "NUMICE"		
$\begin{array}{c} 0.9 \\ A \\ 0.7 \\ 0.5 \\ 0.3 \\ 0.1 \\ 0.9 \\ 0.7 \\ 0.5 \\ 0.3 \\ 0.1 \\ 0.9 \\ 0.7 \\ 0.5 \\ 0.3 \\ 0.1 \\ 0.9 \\ 0.7 \\ 0.5 \\ 0 \\ 0.3 \\ 0.1 \\ 0.9 \\ 0.7 \\ 0.5 \\ 0 \\ 0 \\ 0.3 \\ 0.1 \\ 0.9 \\ 0 \\ 0.3 \\ 0.1 \\ 0.9 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	C Obs-25s C Obs-200s -35 -25 -15 -5 T (°C) C Liquid phase Mixed phase Ice phase	Sensitivity ests to cloud bhase id method 0.9 0.7 0.1 0.9 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

Cloud phase occurrence frequency comparison

		Liquid	Mixed	Ice		Liquid	Mixed	Ice
Obs-	-10°≤T<0°C	34%	17%	49%	CAM-	60%	3%	37%
1 s	-20°≤T<-10°C	18%	5%	77%	colloc	53%	1%	46%
	-30°≤T<-20°C	6%	3%	91%	ated	0%	0%	100%
	-40°≤T<-30°C	3%	4%	92%		0%	0%	100%
Obs-	-10°≤T<0°C	27%	37%	36%	CAM-	70%	4%	25%
200s	-20°≤T<-10°C	16%	17%	67%	doma	29%	1%	70%
	-30°≤T<-20°C	5%	5%	90%	in	1%	<1%	99%
	-40°≤T<-30°C	0%	10%	90%		0%	0%	100%

-20°C≤T<0°C: CAM5 has twice as many liquid phase clouds as observations and much fewer mixed phase clouds

-40°C≤T<-20°C: CAM5 underestimates liquid and mixed phase clouds

All data are restricted to $CWC \ge 0.01 \text{ g m-}3$

Comparisons of cloud microphysical properties

How well can CAM5 represent cloud microphysical properties in three cloud phases?

- Liquid phase:
 - overestimates LWC by 10 times
 - overestimates N_{lig} by 3 times
- Mixed phase:
 - underestimates LWC and N_{liq} by 10 times
 - underestimates IWC by 10 times and overestimates N_{ice} by 10-100 times, likely due to Meyers et al. (1992) parameterization
- Ice phase:
 - underestimates IWC by 100-1000 times
 - underestimates N_{ice} at T > -10°C by 10 times (possibly by lack of secondary ice production and/or less IN over this region)

Sensitivity of LWC / CWC to spatial scales and various cloud phases

- LWC/CWC ratios are similar (<0.1 difference) when averaging observations from the scales of 100s of meters to 10s km (CWC = LWC+IWC)
- When analyzing all cloud phases altogether, CAM5 simulations show lower LWC/CWC ratios than observations by 0.2-0.4.
- When analyzing mixed-phase clouds only, CAM5 simulations show higher LWC/CWC ratios than observations by 0.2.
- 4. Important to validate different cloud phases separately

Liquid saturation assumption

- For 0.1 ≤ LWC/CWC < 0.9, 10 sec averaged obs show 98%, 90% and 64% of RHliq>90% from 0°C to -30°C in 10°C bin. Consistent with previous obs (e.g., Korolev and Mazin 2003).
- <u>But for LWC/CWC ≤ 0.1</u>, only
 80%, 59% and 11% of
 RHliq>90%, respectively.

- Rotstayn et al. (2000) assumes **RH = liquid saturation** when ice and liquid coexist in mixed phase clouds, regardless of the amount of liquid phase.

- Also used in CAM5 (Morrison and Gettelman 2008; Gettelman et al. 2010; Gettelman and Morrison 2015), ECMWF (Forbes and Ahlgrimm 2014),

GFDL CM2 and CM3 (Anderson et

al. 2004; Donner et al. 2011).

- More variability of RH may need to be allowed...

NSF SOCRATES campaign: RH distribution and new water vapor data calibrations

NSF Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES): January 15 – February 24 2018, based at Hobart Australia

Advantage of using in-situ observations for certain comparisons

Ongoing: Cloud phase and cloud fraction in SOCRATES observations and CAM6

How well does CAM6 model represent cloud phase and fraction in segments with heterogeneous phase distributions?

- CAM6 shows similar locations and cloud fraction for where clouds are observed in the example for RF10
- CAM6 captures the dominant phase liquid phase
- CAM6 underestimates occurrence mixed phase cloud segments
- More analyses to be conducted using the newly calibrated water vapor data to compare with nudged and free-running CAM6 simulations

Conclusions

- 1. In-situ observations are very useful for evaluating GCM simulations
- 2. Scale-aware comparisons

dependent on scales: LWC, IWC, N_{ice} , N_{liq} , cloud phase freq independent on scales: LWC/IWC, N_{ice}/N_{liq}

- Nudged, collocated simulations show mostly similar comparison results as free-running simulations for analyses of cloud phase frequency, LWC, IWC, N_{ice}, N_{liq}
- 4. Implications on cloud microphysics parameterizations Observation-based constraints are recommended for specific cloud phases

CAM5 results	Frequency	LWC or IWC	Nliq or Nice	LWC/CWC	Hor scales 0.1- 10 km in obs	
Mixed phase	Too low	10-100 times lower LWC and IWC	10 times lower Nliq, 10-100 times lower Nice	Ratio is 0.2 higher than obs	Increasing freq by 2-3 times	
Liquid phase	Too high at T>-20°C	10 times higher LWC	3 times higher Nliq	For all clouds, ratio is 0.2-	Decreasing freq	
lce phase	Similar	100-1000 times lower IWC	10 times lower Nice at T>10°C	0.4 lower than obs	Decreasing freq	

Acknowledgement

- NSF OPP grant 1744965
- NSF AGS grant 1642291

Future work

Ice supersaturation and mixed-phase clouds in CAM6, compared with SOCRATES and AWARE campaigns by Ching An Yang and Jackson Yip, collab. w/ Andrew Gettelman, Christina McCluskey, and Israel Silber

Cirrus clouds in CAM6 compared with 7 NSF flight campaigns by Ryan Patnaude, collab. w/ Xiaohong Liu

> Thank you! Questions?

RHi frequency distribution at various T and cloud fraction

CAM5 has a lack of variability of RHi, particularly for partial cloud fraction (0.1 - 0.9)

Future work: test parameterizations of sub-grid variability of RHi based on PDFs of q and T.

