

The Whole Atmosphere Community Climate Model Version 6 (WACCM6!)

A. Gettelman, M. Mills, D. Kinnison, R. Garcia, A. Smith, D. Marsh, S. Tilmes, F. Vitt, C. Bardeen, J. McInerny, H. Liu, S. Solomon, L.Polvani, L. Emmons, J.-F. Lamarque, J. Richter, J. Bacmeister, C. Craig, S. Glanville, A. Phillips

Common Name	WACCM4	WACCM-CCMI	WACCM6	
Horizontal Resolution	$1.9^{\circ} x 2.5^{\circ}$	$1.9^{\circ} x 2.5^{\circ}$	$0.95^{\circ}x1.25^{\circ}$	
Vertical Levels	66	66	70	
Deep Convection	\mathbf{ZM}	ZM	ZM^*	
Boundary Layer	$_{\mathrm{HB}}$	HB	CLUBB	
Shallow Convection	Hack	Hack	CLUBB	
Macrophysics	RK	RK	CLUBB	
Microphysics	RK	RK	MG2	
Radiation	CAMRT	CAMRT	RRTMG	
Aerosols	Bulk	Bulk	MAM4	
QBO	Nudged	Nudged	Interactive	
Chemical Mechanism	MA(59)	TSMLT (180)	TSMLT1 (228)	
Chemical Rates	JPL-06	JPL-11	JPL-15	
Sulfate SAD	CCMVal2	CCMI	Interactive	
Ice SAD	Bulk	Bulk	MG2	
Solar Variability	CMIP5-Solar	CCMVal2-Solar CMIP6-So		
GHG Abundances	CMIP5 RCPs	CMIP5 RCPs	CMIP6 SSPs	
Halogens	CMIP5 RCPs	WMO 2010	CMIP6 SSPs	

.

4

.

WACCM6: Headlines

- Same physical parameterizations/tuning as CAM6 + additional GW parameterizations
- Prognostic Stratospheric Aerosols
- Optional D-region ('MAD') Chemistry
- WACCM-X2.1 included (still WACCM4 physics)
- Features: O₃ Hole, Interactive QBO, Good variability from tape recorder to SSWs

WACCM-X 2.1

Extend CESM to the Thermosphere (500km)

- Reduced thermosphere GW eddy diffusion (Hanli Liu Talk Thursday)
 - More atomic Oxygen = better neutral composition & ion density
- Weimer '05 high-latitude potential option
- Steady-state electron temperature solver option
- Full D-region ion chemistry option
- Assimilative Mapping of Ionospheric Electrodynamics (AMIE) Capability
- DART Data assimilation capability (Nick Pedatella talk Thursday (AM)
- Next step is to move to CAM 6 physics & 1° horizontal resolution

WACCM6 Configurations/Simulations

- Historical Fixed SST (AMIP): 3 ensembles FWHIST
- Coupled
 - 1850 Control (500 yrs): B1850
 - 1850-2014, 3 ensembles: BWHIST
- Specified Dynamics: 1980-2014 nearly complete (FWSD)
- Specified Chemistry: Exists, have not run it yet (FWSC)
- Above all 1° resolution. 70L: 2° resolution being developed.
- L110 version will also be developed
- WACCM-X2.0

Component Set	FWHIST	FWSD	BW1850	BWHIST	FWD	FWX
CAM Component Set	FHIST	FWSD	B1850	BHIST	N/A	N/A
WACCM Ensembles	3	1	1	3	1	1
# Years or Dates	1950-2014	2005-2017	500	1850-2014		
Coupled Ocean/Ice	No	No	Yes	Yes	No	No
Specified Dynamics	No	Yes	No	No	No	No
Chemistry	TSMLT1	TSMLT1	TSMLT1	TSMLT1	TSMAD	TSMLT
Cost (CPU hrs/sim yr)						

Results

- Climo/Ann Cycle
- Variability
- Trends
- Low v. High Top & Chemistry

Climo: WACCM6 v. T

1985 - 2013 Averages

Credit: Richter

Climo: WACCM6 v. U

Credit: Richter

1985 - 2013 Averages

FRf

JFMAMJJASOND

Credit: Glanville

Variability/Trends

Variability:

- SSWs from PI control
- QBO: WACCM-FR
- Volcanoes

Trends

- O₃ hole
- 20th Century Temp

SSW Frequency

Credit: Garcia

Polar O₃ Evolution

Credit: Kinnison

T biases and Polar O₃

1985 - 2013 Averages

The main region of O3 depletion in the model will happen between 100-30hPa. In the LS there does seem to be a -2K bias in September poleward of ~80°S. But may be 'lucky' in that bias does not affect major area of O_3 depletion in space/time

Tropical O₃ Evolution

Faster upwelling 100-50hPa leads to less tropical O_3

Credit: Kinnison, Glanville

QBO

Averaged over 1979 - 2014, the QBO periods are: ERAI: 28.3 months AMIP: 28.9 months (3 ens avg) Coupled: 27.0 months (3 ens avg)

-10

0

-20

Credit: Richter

Volcanic Aerosols

Now including the Southern Hemisphere!

Credit: Mills

CAM6 v. WACCM6

AODVIS CAM6 - WACCM6 PI Control

CAM6 & WACCM6 have same tuning & very similar climate.

WACCM6 coupled slightly different TOA balance point (1Wm-2) due to clearsky & clouds compensating

- 1. WACCM 'TOA' Clearsky differs from CAM by 2Wm-2 (upper atmosphere processes)
- WACCM has lower AOD (tropospheric chemical processing & different aerosol scheme): impacts Cloud Radiative effects (~1Wm-2 less for +LW and -SW)
- 3. Better high latitude surface pressure variability (and perhaps mean too) in WACCM

WACCM v. CAM Variability

WACCM Has better High Latitude winter variability down to the surface than CAM PSL Standard Deviations (DJF)

WACCM6!

- QBO & SSWs good
- Reduced Wind and Temp biases
- Improvements in O3 hole better T and Chem
- Prognostic Volcanoes (Geoengineering)
- Interactive Secondary Organic Aerosols (land coupling)
- Same code as low top model
- Full chemistry (Unified strat/trop)
- Trop Chemistry creates some cloud differences
- Stratosphere may improve variability (stay tuned)