A simplified parameterization of isopreneepoxydiol-derived secondary organic aerosol (IEPOX-SOA) for global chemistry and climate models

Duseong S. Jo, Alma Hodzic, Louisa K. Emmons, Eloise A. Marais, Zhe Peng, Benjamin A. Nault, Weiwei Hu, Pedro Campuzano-Jost, and Jose L. Jimenez

and Simone Tilmes, Becky Schwantes, and other NCAR colleagues

CESM Chemistry Climate Working Group Meeting Chapman Room, NCAR MESA Lab 10:00 AM, 21 Feb 2019

https://you.stonybrook.edu/johnmak/mak-lab/biosphere-atmosphere-interactions/

University of Colorado Boulder

IEPOX-SOA fractions of OA : up to 36%

3

Schematic diagram of IEPOX-SOA chemistry

Çj

University

Schematic diagram of IEPOX-SOA chemistry

Çj

University

Chemistry models usually calculate isoprene-derived SOA using a simplified partitioning approach such as the Volatility basis set (VBS) approach

leactions

#	Reactions	Reaction rate		
1	ISOP Geoscientific Model Development		50/T)	
2	ISOP An interactive open-access journal of the European Geosciences Union		970/T)	
3	ISOP EGU.eu EGU Publications EGU Highlight Articles Contact Imprint Data protection		50/T)	
4	ISOPC https://doi.org/10.5194/gmd-2019-9	Discussion papers	300/T)	
5	ISOPC © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.		50/T)	
6		Abstract Discussion Metrics		
7	ISOPC Development and technical paper	05 Feb 2019		
8	ISOPC A simplified parameterization of isoprene-epoxydiol-derived	Review status		
9	secondary organic aerosol (IEPOX-SOA) for global chemistry and ISOPC climate models	is a manuscript under review for the	'694/T)	
10	ISOPC Duseong S. Jo ^{(1),2} , Alma Hodzic ^{3,4} , Louisa K. Emmons ⁽¹⁾³ , Eloise A. Marais ⁽¹⁾⁵ ,	Development (GMD).	00/T)	
11	ISOPC and Jose L. Jimenez ^{1,2}	Zhe Peng ^{1,2} , Benjamin A. Nault ^{1,2} , Weiwei Hu ^{1,2} , Pedro Campuzano-Jost ^{1,2} , and Jose L. Jimenez ^{1,2} ¹ Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA ² Department of Chemistry, University of Colorado, Boulder, CO, USA		
12	ISOPC USA ² Department of Chemistry, University of Colorado, Boulder, CO, USA			
13	ISOPN ³ Atmospheric Chemistry Observations and Modeling Lab., National Center for Atmospheric Research, Boulder, ⁴ Laboratoire d'Aérologie, Université de Toulouse, CNRS, UPS, Toulouse, France	CO, USA	80/T)	
14	ISOPN		80/T)	
15	Received: 12 Jan 2019 – Accepted for review: 04 Feb 2019 – Discussion started: 05 Feb 2019			
16	Abstract. Secondary organic aerosol derived from isoprene epoxydiols (IEPOX-SOA) is thought to consistent isoprene SOA, but the current volatility-based lumped SOA parameterizations are not appropriate to	ontribute the dominant fraction of total represent the reactive uptake of IEPOX		
17	onto acidified aerosols. A full explicit modelling of this chemistry is however computationally expensive reactions tracked, which makes it difficult to include it in chemistry climate models for long-term studies are accounted at the statement of the statement	ive owing to the many species and dies. Here we present three simplified	100/T)	
18	IEPOX parameterizations for IEPOX-SOA simulation, based on an approximate analytical/fitting solution of t timescale. The yield and timescale can then be directly calculated using the global model fields of ox	the IEPOX-SOA yield and formation didants, NO, aerosol pH and other key	1	
19	ISOPC intermediates while retaining the key physico-chemical dependencies. We have implemented the new parameterizations into the GEOS-Chem depth]			
20	IEPOX 3 % yield parameterization) and compared all of them to the case with detailed full chemistry. The b	est parameterization (PAR3) captures the	depth1	

202	Cti	nc

	#	Reactions	Reaction rate
	1	ISOP + OH -> 1.0 ISOPO ₂	3.1E-11 exp(350/T)
	2	ISOP + O ₃ -> other products	1.00E-14 exp(-1970/T)
	3	ISOP + NO ₃ -> other products	3.3E-12 exp(-450/T)
	4	ISOPO ₂ + HO ₂ -> 0.937 ISOPOOH	2.12E-13 exp(1300/T)
	5	ISOPO ₂ + NO -> 0.023 ISOPND + 0.047ISOPNB	2.7E-12 exp(350/T)
	6	ISOPO ₂ + CH ₃ O ₂ -> other products	2.00E-12
	7	ISOPO ₂ + ISOPO ₂ -> other products	2.30E-12
	8	ISOPO ₂ + CH ₃ CO ₃ -> other products	1.40E-11
	9	ISOPO ₂ -> other products	4.07E+08 exp(-7694/T)
	10	ISOPOOH + OH -> 0.387 ISOPO2	4.75E-12 exp(200/T)
	11	ISOPOOH + OH -> 0.850 IEPOX	1.9E-11 exp(390/T)
$\mathbf{f}_{\text{Isoprene} \to \text{ISOPO}_2} = \frac{\mathbf{k}_1 \times [\text{OH}]}{\mathbf{k}_1 \times [\text{OH}] + \mathbf{k}_2 \times [\mathbf{O}_3] + \mathbf{k}_3 \times [\text{NO}_3]}$			
	10	130FIND + 03 - 2000 CIS = 2000 CIS	JE-10
	17	IEPOX + OH -> other products	4.42e-11 exp(-400/T)
	18	IEPOX -> IEPOX-SOA	Calculated
	19	ISOPOOH dry deposition	2.5 cm s ⁻¹ / [PBL depth]
	20	IEPOX dry deposition	2.5 cm s ⁻¹ / [PBL depth]

IEPOX-SOA_{PAR} = $Y_{\text{IEPOX-SOA}} \times E_{\text{Isoprene}}$

 $Y_{IEPOX-SOA} = f(OH,O_3,NO_3,HO_2,NO,CH_3O_2,CH_3CO_3,pH,Aerosol surface area,organic coating)$

Schematic diagram of IEPOX-SOA chemistry

Çj

University

IEPOX-SOA_{PAR} = $Y_{\text{IEPOX-SOA}} \times E_{\text{Isoprene}}$

 $Y_{IEPOX-SOA} = f(OH,O_3,NO_3,HO_2,NO,CH_3O_2,CH_3CO_3,pH,Aerosol surface area,organic coating)$

G University

Annual mean IEPOX-SOA surface maps and scatterplots for troposphere

Sensitivity to emission changes and computational time

Ð

Unit: [s]	Chemistry	Transport	Dry deposition	Wet deposition	Total
FULL	559	172	30	380	1141
VBS	7	120	20	253	400
PAR1	47	34	7	84	172
PAR2	13	34	7	84	138
PAR3	48	52	7	127	234
				10	

14

Moving from GEOS-Chem to CAM-chem for future simulations of SOA

	GEOS-Chem	CAM-chem
Aerosol scheme	Bulk aerosol scheme	Modal aerosol scheme (MAM4: 4 modes)
Species	BC, POA, SOA, Sulfate, Nitrate, Ammonium, Sea salt, Dust	BC, POA, SOA, Sulfate, Sea salt, Dust, Number + Nitrate, Ammonium (MOSAIC)
Thermodynamics	ISORROPIA II	MOSAIC
Mixing state	External	External(between modes) + Internal (within modes)
Condensation and coagulation	No	Yes
Aging of BC and POA	Fixed e-folding time scale (1.15 days)	Directly calculated
Time required for 1 year simulation	~ 5 days	~12 hours

Aerosol pH fields from CESM2.1 (MOSAIC)

+ Ca²⁺, Cl⁻, NH₄⁺, NO₃⁻, CO₃²⁻ (MOSAIC) Liu et al. (2016)

Evaluating SOA under Future Climate

IEPOX-SOA and **Monoterpene SOA** change in future climate University of Colorado Boulder **IEPOX-SOA**

Monoterpene SOA

5,

Summary

Summary

Back-up slides

Isoprene emission change

Factors affecting isoprene emissions
→ light, temperature, leaf age, leaf area index, and CO₂

Gamma values change (2050/2010) for biogenic emissions $\gamma = C_{CE} \cdot LAI \cdot \gamma_p \cdot \gamma_T \cdot \gamma_A \cdot \gamma_{SM} \cdot \gamma_C$

Future changes of IEPOX-SOA precursors and oxidants

Future changes of chemical pathways affecting IEPOX-SOA (2050/2010)

5,

University of Colorado

Biogenic emission estimate algorithm

- Based on MEGANv2.1 (Guenther et al., 2012)

 $\gamma = \mathbf{C}_{\mathbf{C}\mathbf{E}} \cdot \mathbf{L}\mathbf{A}\mathbf{I} \cdot \gamma_{\mathbf{p}} \cdot \gamma_{\mathbf{T}} \cdot \gamma_{\mathbf{A}} \cdot \gamma_{\mathbf{S}\mathbf{M}} \cdot \gamma_{\mathbf{C}}$

- (1) C_{CF} : canopy environment coefficient. A value that results in $\gamma = 1$ for the standard conditions and is dependent on the canopy environment model being used. 0.3 is used for CESM2 land model
- (2) LAI: Leaf Area Index
- (3) γ_p : gamma for emission response to light (applied separately for the sunlit and shaded $\gamma_{p} = (1-LDF) + LDF \cdot \gamma_{p \ LDF}$ LDF: light dependent fraction (1 for isoprene)

$$\begin{split} \gamma_{p_LDF} &= C_p \frac{\alpha \cdot PPFD}{\sqrt{1 + \alpha^2 \cdot PPFD^2}} & \text{PPFD}: \text{photosynthetic photon flux density (µmol m^{-2} s^{-1})} \\ \alpha &= 0.004 - 0.0005 \ln(P_{240}) \\ C_p &= 0.0468 \cdot \exp(0.0005 \cdot [P_{24} - P_s]) \cdot [P_{240}]^{0.6} \\ \end{split} \\ \end{split} \\ \begin{array}{l} P_s : \text{standard conditions for PPFD averaged} \\ \text{over the past 24h (200 µmol m^{-2} s^{-1} \text{ for sun} leaves and 50 µmol m^{-2} s^{-1} \text{ for shaded leaves})} \\ P_{24} (P_{240}): \text{ average PPFD of the past 24h (240h)} \end{split}$$

(4) γ_T : gamma for emission response to temperature

$$\begin{split} \gamma_{\rm T} &= (1-{\rm LDF}) \cdot \gamma_{\rm T_LIF} + {\rm LDF} \cdot \gamma_{\rm T_LDF} \\ \gamma_{\rm T_LDF} &= E_{\rm opt} \frac{C_{\rm T2} \cdot \exp({\rm CT}_1 \cdot {\rm x})}{C_{\rm T2_}{\rm CT}_1 \cdot (1-\exp({\rm C}_{\rm T2} \cdot {\rm x}))} \end{split} \\ E_{opt} &= Ceo \cdot \exp(0.05 \cdot ({\rm T}_{24} - {\rm T}_{\rm s}) \cdot \exp(0.05 \cdot ({\rm T}_{240} - {\rm T}_{\rm s})) \\ T_{opt} &= 313 + (0.6 \cdot (T_{240} - Ts)) \end{aligned} \\ \gamma_{\rm T_LIF} &= \exp(\beta \cdot ({\rm T} - {\rm T}_{\rm s})) \\ \text{LIF: light independent fraction} \\ T_{\rm s} : \text{ standard conditions for leaf temperature (297 K)} \\ C_{\rm T1}, C_{\rm T2}, C_{\rm eo}, \beta: \text{ Empiricially determined coefficients} \\ - C_{\rm T1} &= 95, C_{\rm T2} &= 230, C_{\rm eo} &= 2, \beta = 0.13 \text{ for isoprene} \end{split}$$

sun

Biogenic emission estimate algorithm

- Based on MEGANv2.1 (Guenther et al., 2012)

 $\gamma = \mathbf{C}_{\mathbf{C}\mathbf{E}} \cdot \mathbf{L}\mathbf{A}\mathbf{I} \cdot \gamma_{\mathbf{p}} \cdot \gamma_{\mathbf{T}} \cdot \gamma_{\mathbf{A}} \cdot \gamma_{\mathbf{S}\mathbf{M}} \cdot \gamma_{\mathbf{C}}$

(5) $\gamma_A\!\!:$ gamma for emission response to leaf age

 $\gamma_{A} = F_{new} \, \cdot \, A_{new} + F_{gro} \, \cdot \, A_{gro} + F_{mat} \cdot \, A_{mat} + F_{sen} \cdot \, A_{sen}$

A_{new}, A_{gro}, A_{mat}, A_{sen}: Empirical coefficients that describe the relative mission rates for new, growing, mature, and senescing leaves (=0.05, 0.6, 1.0, 0.9 for

isoprene)

F_{new}, F_{gro}, F_{mat}, F_{sen}: leaf age fractions calculated by MEGAN

(6) γ_{SM} : gamma for emission response to soil moisture (only for isoprene)

$$\begin{split} \gamma_{SM} &= 1 \\ \gamma_{SM} &= (\theta - \theta_w) \ / \ \Delta \theta_1 \\ \gamma_{SM} &= 0 \end{split}$$

 $\begin{array}{l} \theta > \theta_{1} \\ \theta_{w} < \theta < \theta_{1} \\ \theta < \theta_{w} \end{array} \qquad \begin{array}{l} \theta: \text{ soil moisture (volumetric water content, m^{3} m^{-3})} \\ \theta_{w}: \text{ wilting point (the soil moisture level below which plants cannot extract water from soil, m^{3} m^{-3})} \\ \Delta \theta_{1}: \text{ empirical parameter (0.04)} \\ \theta_{1}: \theta_{w} + \Delta \theta_{1} \\ \end{array} \qquad \begin{array}{l} \text{Currently assumed to be 1 in CESM model} \end{array}$

(6) γ_C : gamma for emission response to CO_2 inhibition (only for isoprene)

$$\gamma_{\rm C} = \mathbf{I}_{\rm Smax} - \frac{I_{\rm Smax} \cdot (C_i)^h}{(C^*)^h + (C_i)^h}$$

Calculated for long-term (based on ambient CO₂) and short-term (based on intercellular CO₂) exposures C_i: 0.7 x ambient CO₂ for long-term exposure intracellular CO₂ for short-term exposure C*, h, I_{Smax}: Empirically determined parameters (Heald et al., 2009)

Surface 2-D map of pHs in GEOS-Chem

IEPOX-SOA_{PAR} = $Y_{\text{IEPOX-SOA}} \times E_{\text{Isoprene}}$

 $Y_{IEPOX-SOA} = f(OH,O_3,NO_3,HO_2,NO,CH_3O_2,CH_3CO_3,pH,Aerosol surface area,organic coating)$

Clobal models tend to simplify secondary organic aerosol formation mechanism in order to reduce computational cost

• For example,

The default SOA scheme in the next GEOS-Chem (v11-02) is simplified SOA scheme.

→ For isoprene SOA, constant 3% yield is applied. (1.5% mass yield SOAP, 1.5% mass yield SOAS)

Summary

