

Chemistry-Climate Working Group Current Status – February 2019

Co-chairs:Louisa Emmons (NCAR)Xiaohong Liu (U. Wyoming)Liaison:Simone Tilmes (NCAR)Software Engineer: Francis Vitt (NCAR)

Chemistry-Climate Working Group Session – 21 February 2018

Chemistry-Climate Working Group Status

CESM2 (CESM2.1.0 released)

- CAM6 with MAM4 aerosols, CLM5
- MOZART-T1 tropospheric chemistry in TS1 (CAM-chem) and TSMLT1 (WACCM), VBS-SOA
- CAM-chem and WACCM compsets

Description papers

- MOZART-TS1 chemistry (Emmons et al., in prep. for JAMES)
- VBS-SOA (Tilmes et al., in prep. for JAMES)

Simulations available

- CMIP6 (WACCM, CAM) on /glade/
- CAM-chem-SD (2001-2016), QFED fire emissions ACOM/CAM-chem website

CCWG and CAM-chem webpages

New wiki page for new and experienced users:

https://wiki.ucar.edu/display/camchem/Home

- Points to User's Guide, Scientific Guide, Quick start guide
- Provides additional information for customizing simulations, modifying chemistry and code, etc.
- Identifies current users to promote collaboration

Send info, publications for

http://www.cesm.ucar.edu/working groups/Chemistry/

and

https://www2.acom.ucar.edu/gcm/cam-chem

CAM-Chem Pages Blog CHILD PAGES Pages Home How to Get an account on Chey Run CAM-Chem on Cheyenne Run CAM-chem on your home Y 12 more child pages	Pages Home Created by WEG Administrator, last modified by Rebecca Buchholz on Jun 13, 2018 CESM2 is Released!!! Welcome to the CAM-chem Wiki		
	(Community /	Atmosphere Model with chemistry Get a Cheyenne Account Run on Cheyenne (the NCAR HPC) Home Machine (fully coupled version in CESM) Nomenclature (Glossary for those new to the CESM world) Release Versions and Compsets	
	Easy Changes	 Namelist changes Changing Dates of Run Changing Emissions Input Changing Output (time and species) Defining Nudging Amount for Specified Dynamics All CAM Namelist Variables 	
	Advanced Changes	 Data Assimilation Online Air-Sea Interface for Soluble Speces Updating Gas-phase Chemistry Adding Tags Prescribed Oxidant Fields Branch or Clone 	
Space tools ▼ <	Model Component Descriptions	 Wet Deposition (User Guide/Science Guide) Dry Deposition (User Guide/Science Guide) Chemistry Emission Inventories Aerosols 	
	Processing	 Pre-processing Post-processing Automated CESM diagnostic package GitHub Tutorial 	
	User Community	 Current Users/Projects Chemistry-Climate Working Group Publications UCAR Publications 	
	Other links and documents	 Development Blog Quick Start User Guide CAM User Guide CAM Scientific Guide ACOM CAM-chem page ACOM CAM-chem page 	

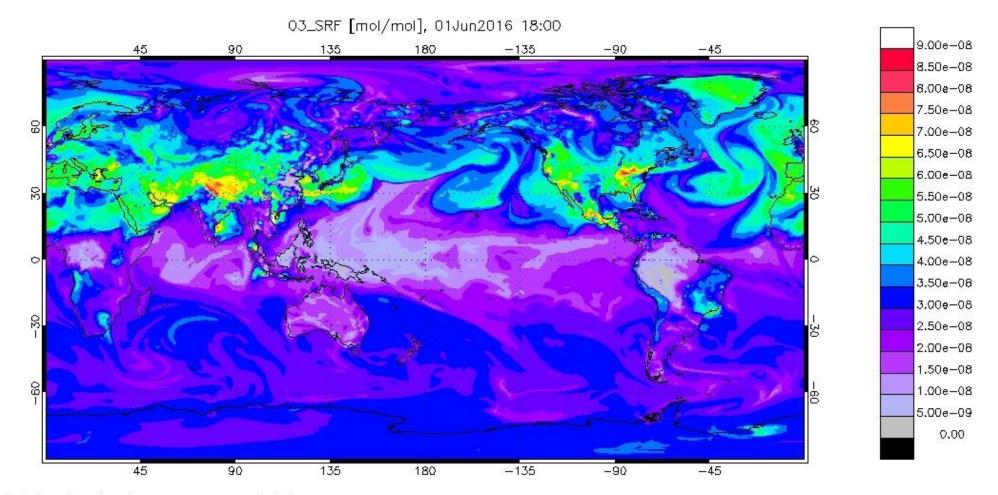
Benchmarks and Production Experiment

Diagnostics

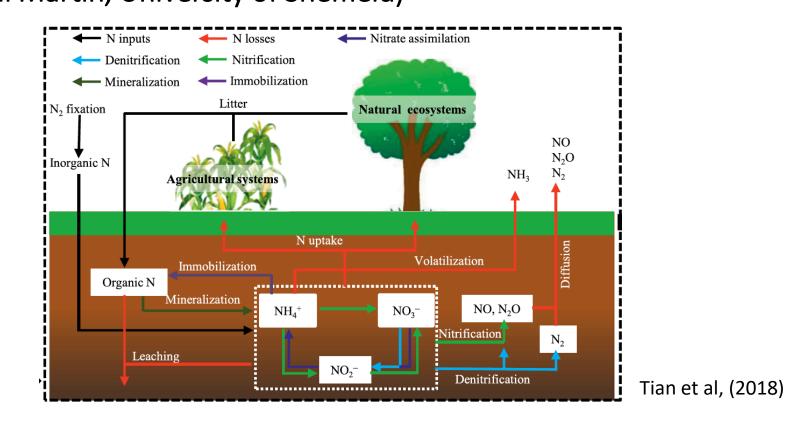
https://wiki.ucar.edu/display/camchem/Home

Users and Projects

Created by Rebecca Buchholz, last modified on Oct 10, 2018


Share what you are working on with CAM-chem: submit your details with this google form.

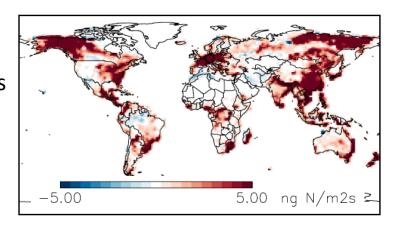
Name/contact	Institute/ Organization	Description of project/s	Date updated
Rebecca Buchholz	NCAR/ACOM	Understanding biomass burning and local versus distant contributions to pollution, with a focus on CO. Also interested in climate-chemistry links. Experiments include: 1. Full chemistry simulation from 1979 to present; 2. Intercomparison of BB inventories; 3. Tagged CO for pollution event attribution; 4. Using the interactive fire module and comparing to inventories.	2018-04 03
Louisa Emmons	NCAR/ACOM	Co-chair of CESM Chemistry-Climate Working Group; evaluating updated chemistry mechanisms with field campaign observations; analysis of KORUS-AQ observations.	2018-05- 14
Benjamin Gaubert	NCAR/ACOM	Chemical data assimilation, ensemble forecasting, model evaluation and intercomparison.	2018-05 01
Duseong Jo	University of Colorado, Boulder	Investigating the sources, properties, processing, and removal of organic aerosols under current and future climate scenarios.	2018-04 26
Forrest Lacey	NCAR/ACOM	Implementing chemistry into spectral elements grid with regional refinement. Research focus includes modeling anthropogenic influences on ambient air quality and estimating the related health impacts.	2018-06 13
Rebecca Schwantes	NCAR/ACOM	Improving simulated surface Ozone in CAM-chem by 1) Updating and adding more complexity to the current chemical mechanism for isoprene and terpene oxidation, 2) Testing different NO emission inventories and assumptions, and 3) Testing the impact of model resolution including using the new Spectral Element version of CAM-chem, which has the capability for regional refinement.	2018-04 03
Wenfu Tang	University of Arizona	1) KORUS-AQ field campaign analysis, 2) CO2 simulation in CAM-chem.	2018-07 11
Simone Tilmes	NCAR/ACOM	CESM Chemistry Climate Working Group Liaison / User Support for CAMchem. Works on CAM-chem development, evaluation, chemistry-aerosol-climate interactions.	
Siyuan Wang	NCAR/ACOM	Developing an online air-sea exchange module for trace gases for CESM, in order to better understand the broader impacts of ocean on the atmospheric budgets of an array of compounds of interests, such as oxygenated volatile organic compounds (OVOCs), halogenated VOCs, etc.	2018-04 15
Najib Yusuf	NASRDA Centre for Atmospheric Research, Nigeria	Using CAM-chem with different emissions inventories to compare with ground-based, aircraft and satellite observations in order to study AQ and climate impacts over Nigeria.	2018-09 28
Haipeng Zhang	Nanjing University	Using CAM-chem to investigate what causes the variation in low-cloud cover over China in recent years.	2018-09 29
Yuqiang Zhang	Duke University	Using CAM-Chem to investigate regional emission changes on global tropospheric ozone burden; To study the intercontinental transport of air pollution from China to western US.	2018-10 10

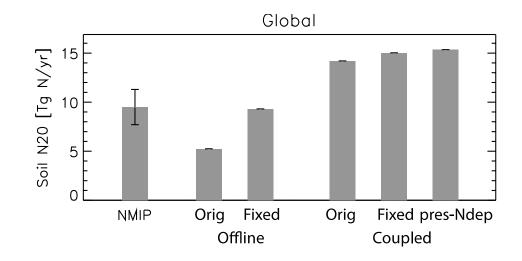

We encourage users to share their current research and development activities on the wiki page

KORUS-AQ & 0.5deg CAM-chem {work in progress}

- CAM-chem-SD: 0.47x0.63, 2016
- CMIP6 Emissions with KORUS inventory for East Asia

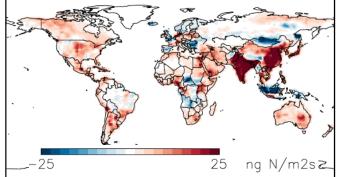
Update on soil nitrogen emissions in CESM2 (Maria Val Martin, University of Sheffield)

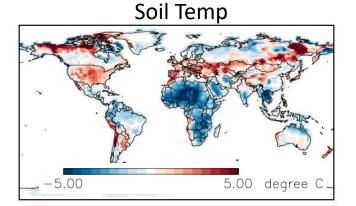

- Fixed low N₂O fluxes in tropical regions (with Cynthia Nevison, CU)
- Implemented soil NO emissions (Parton et al., 2001 scheme)
- Implemented soil NH₃ volatilization (with Victor Fung, CUHK)
- Coupled N₂O, NO and NH₃ from CLM5 to CAM-chem (with Francis Vitt)

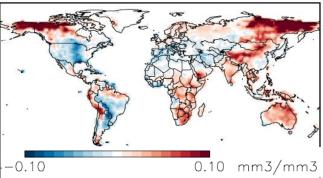

Update on soil nitrogen emissions in CESM2 (cont.)

(Maria Val Martin, University of Sheffield)

- Soil N₂O and NO fluxes in CLM5 are within estimates (not shown)
- Large positive bias of soil N_2O (and NO and NH_3) when CLM5 and CAM-chem are coupled.


Coupled - Offline Soil N₂O Emissions




- Issue with higher soil temperature and water content in northern latitudes?
- Too much N deposition in east Asia and India?

N deposition

Soil Water

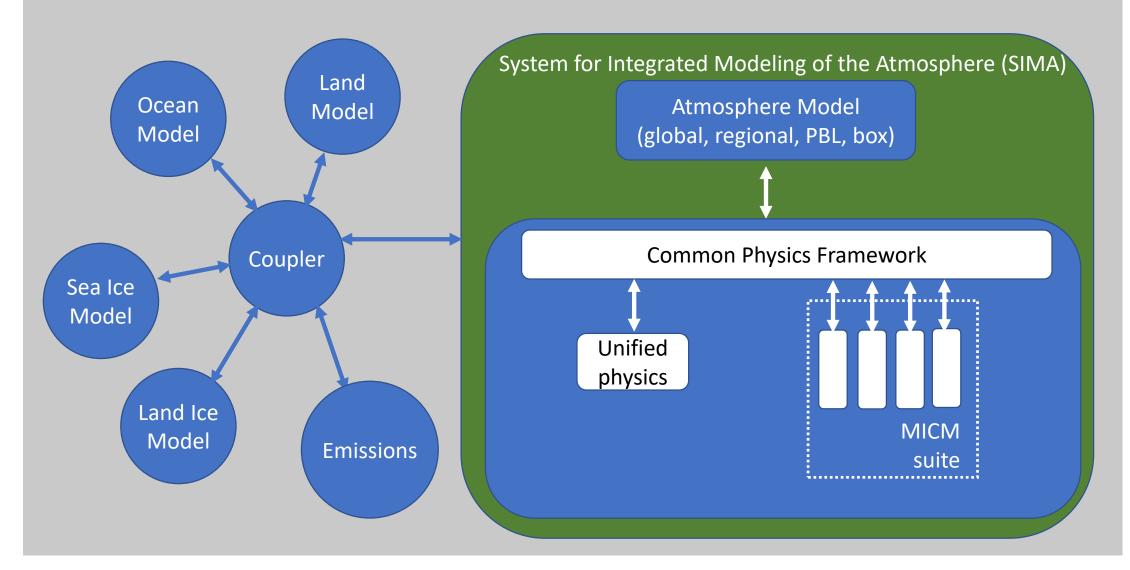
MUIti-Scale Infrastructure for Chemistry & Aerosols (MUSICA)

Within five years develop, *jointly with the community*, a computationally feasible **global modeling framework** that allows for simulation of large-scale atmospheric phenomena, while still **resolving chemistry at emission and exposure relevant scales**.

MUSICA is being built on SIMA: System for Integrated Modeling of the Atmosphere

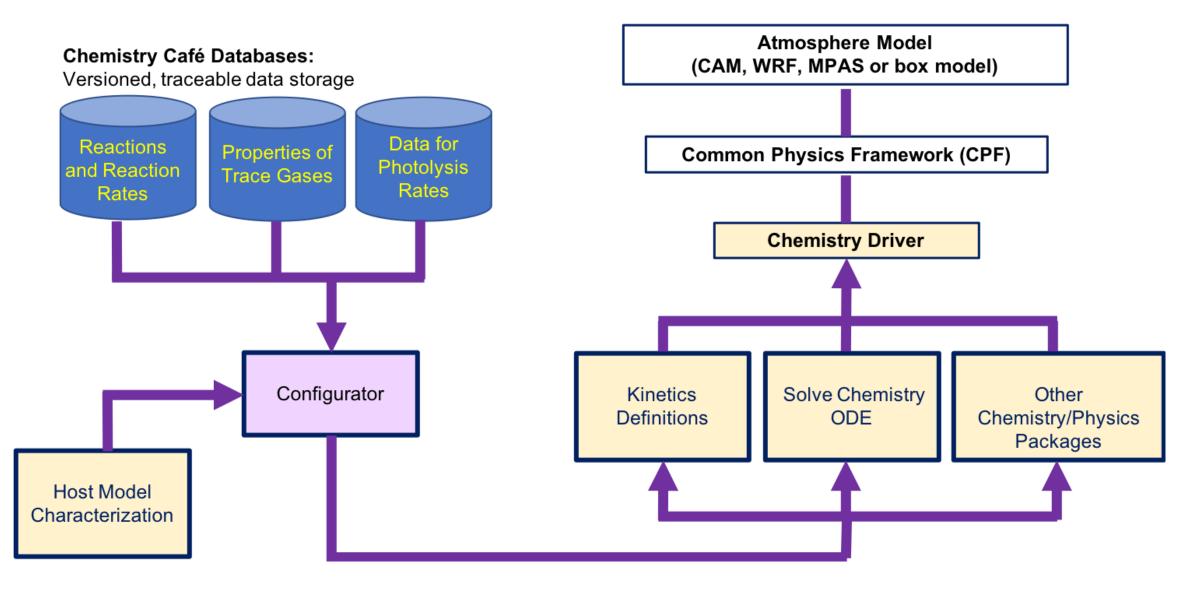
SIMA Vision: An integrated global & regional atmospheric modeling system capable of simulating cloud to global scales in a community earth system model

- Encompass Climate, Weather, Chemistry & Geospace Applications
- Prediction (Initialized and Forecast) capabilities
- Complement & extend existing applications (CESM/WRF/MPAS)
- One community system: shared infrastructure and components

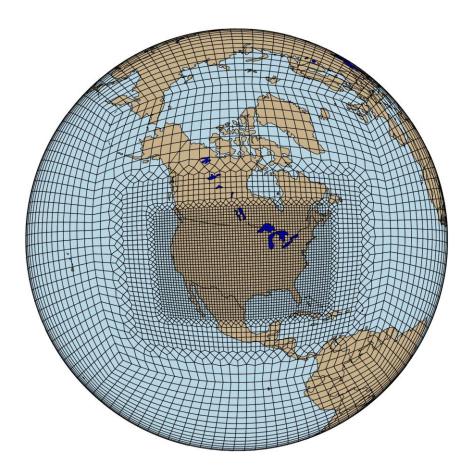

SIMA (System for Integrated Modeling of the Atmosphere) Activities

- Development of Common Physics Framework
- Development of MICM = Model Independent Chemistry Module
- Remapping to Geomagnetic Grid
- Data assimilation capabilities
- Placing MPAS dynamics in CESM

System for Integrated Modeling of the Atmosphere (SIMA) **Atmosphere Model** (global, regional, PBL, box) **Common Physics Framework** Unified physics MICM suite


CESM = Community Earth System Model MPAS = Model for Prediction Across Scales

MUSICA configuration


Model-Independent Chemistry Module (MICM)

Same infrastructure for box models, regional-scale models, and global models

MUSICA V1: CAM-chem-SE with regional refinement (RR) {*in development*}

CAM-chem-SE-RR team includes Forrest Lacey, Becky Schwantes, Simone Tilmes, Louisa Emmons, Ben Gaubert, Gabi Pfister, Dan Marsh, Stacy Walters and collaborators in MMM & CGD

- Community Atmosphere Model with Chemistry (CAM-chem)
- Spectral element: approx. 1° for the globe, with CONUS at 14 km (~0.125°)
- Full tropospheric and stratospheric chemistry (as in CESM2)

Forrest's talk in Joint WA-CC WG session Wed

Development Activities and Plans

- Sea Salt Tuning needed for emissions for CESM2
- Specified Dynamics at 32 Levels MERRA2 interpolated to 32L, investigating nudging factors, fields to constrain, etc.
- Inorganic nitrate aerosols and MOSAIC (Zavieri et al., Zheng Lu, Duseong Jo)
- Brown carbon (published in CAM5.4, need to move to CAM6)
- Improved wet scavenging in convective clouds (Pengfei Yu, Yunpeng Shan)
- Improved dust representation (Xiaohong Liu et al.)
- Online ocean emissions of VOCs, DMS, NO (Siyuan Wang)
- Updated chemistry: terpenes, higher alkanes, fire compounds and their oxidation (Becky Schwantes)
- VSL halogen chemistry (Doug Kinnison, Alfonso Saiz-Lopez, Siyuan Wang, et al.)
- Spectral Element/refined grid with chemistry (Forrest Lacey, Becky Schwantes, et al.)
- CAM-chem-SE-RR with meteorology nudging (Simone)
- Online TUV and/or Fast-J (helpers welcome!)
- Update MEGAN biogenic emissions (in CLM) (Alex Guenther, UCI)
- CARMA implementation (Pengfei and NCAR)
- VBS improvement: add high NOx environment (especially for higher horiz. resolution)
- Updated SOA from Isoprene/IEPOX & Terpenes (Duseong Jo)

CAM-chem updates for CESM2.2+

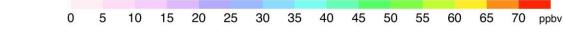
Desired compsets

- Specified dynamics at 32L
- CAM-chem with full VBS (source types)
- T1 only (specified stratospheric chem.)
- 0.5 degree
- Tagged CO
- Tagged NOx/O3
- ?

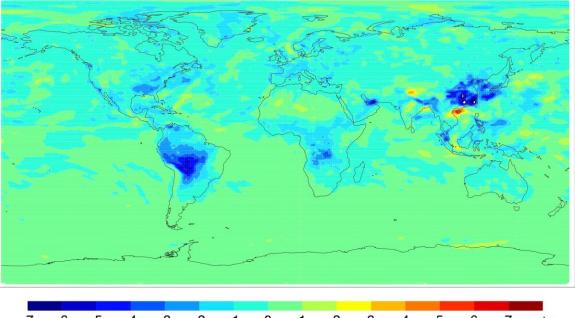
After first publication or additional testing/evaluation:

- MOSAIC gas-aerosol exchange with nitrate aerosols
- Expanded terpene chemistry
- Expanded alkane chemistry
- Interactive fires (*not working yet*)

Feedback to the AMWG

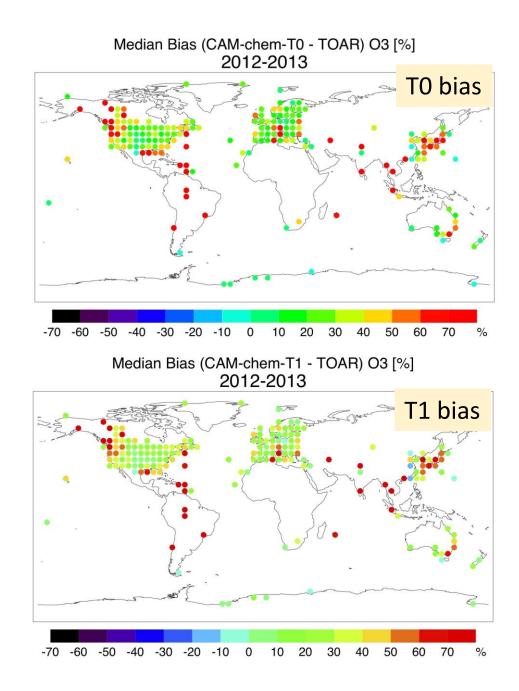

- Improvements to BL needed for Air Quality, including:
 - More levels in BL

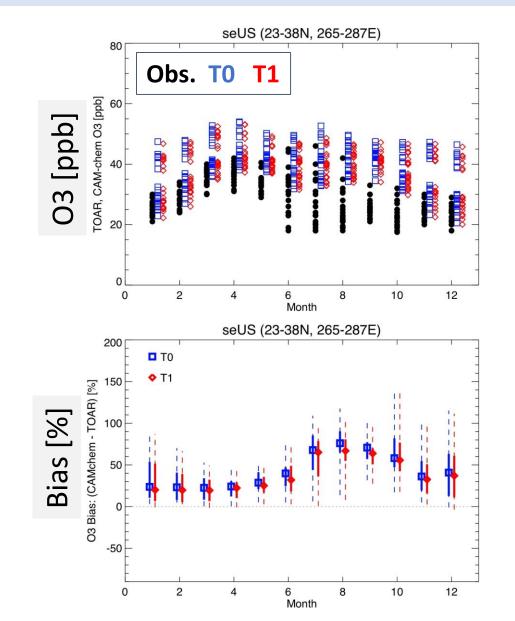
•

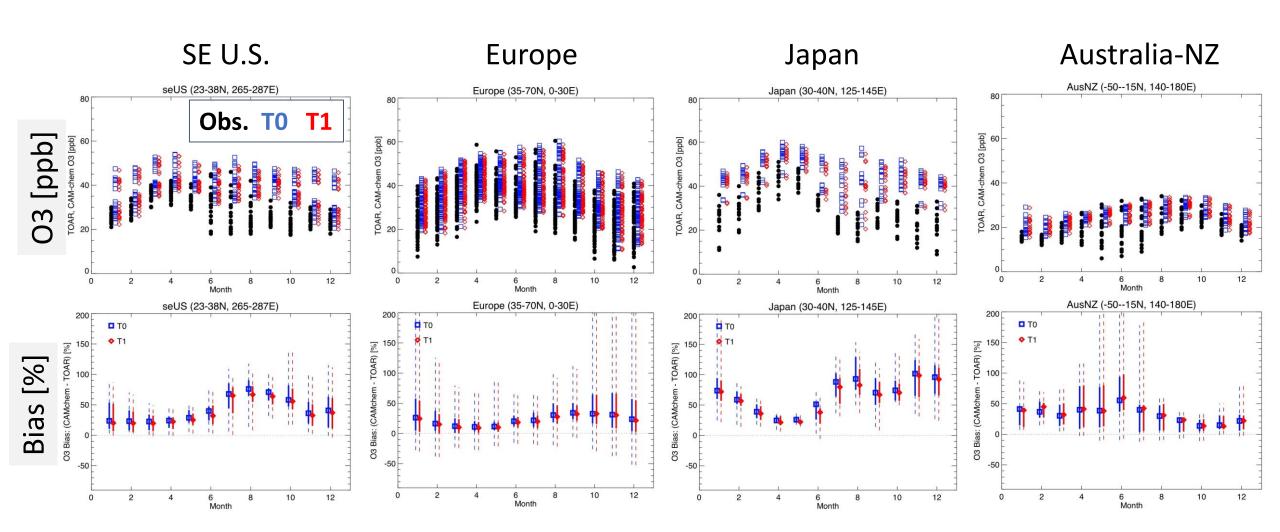

- More realistic mixing in BL
- Scale-aware parameterizations for dust and sea salt emissions

CESM2 Aug 2013 Surface Ozone - T1

regions for the second se


CESM2 Aug 2013 Surface Ozone - (T1-T0)


-2 -3 0 5 ppbv -1 2 3 4 6 -7 -6 -5 -4 1 7


Impact of new T1 chemistry

Ozone is reduced in high-isoprene regions

T1 chemistry slightly reduces surface ozone bias, such as Summer in Southeast U.S.

