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Ocean emits climate-relevant gases
• Photochemistry of dissolved organics in seawater produces biologically labile compounds, 

volatile organic compounds (VOCs), and CO (Kieber et al., Nature 1989; Kieber et al., Limnology and 

Oceanography, 1990; Mopper et al., Deep-Sea Research 1991; etc), which is also the rate-limiting step 
for the removal of a large fraction of oceanic DOC (Mopper et al., Nature 1991). 

Worden et al Science 2015

CO2, O2, trace gases• Many of the ocean-emitted trace gases have 
profound impact on the atmosphere:

 DMS (aerosol / cloud)

 Organohalogens (stratospheric O3)

 VOCs (O3, oxidative capacity)

 Reactive nitrogen (O3, oxidative capacity)
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Ocean biogeochemistry control: previous

Chemistry 
Solver

Atmosphere Model

Prescribed 
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• Current approach: prescribed oceanic emissions for climate-relevant trace gases, 
e.g. DMS, organohalogens, ...

• This is easy, but not entirely skillful and has very limited predictibility. For example:

 Emission fluxes do not response to changes in local conditions

 Poorly justfied future / past climate projections
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Fully Coupled Air-Sea Exchange Interface

• An Online Air-Sea Interface for Soluble Species (OASISS) is developed for NCAR CESM2 | 
CAM-Chem to predict the bi-directional oceanic flux of trace gases. 

• The model framework is flexible and user-friendly (plug and play)

Katsushika Hokusai. The Great Wave off Kanagawa (神奈川沖浪裏), 1831

Chemistry

Meteorology 
(e.g. wind)

Sea surface temperature, 
salinity, pH
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Ocean biogeochemistry control: ideal
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• Ideally, we should explicitly describe the sources, sinks, transport, and air-sea exchange 
processes of these compounds in the ocean. 

• Surface seawater concentration is the key connection between the atmospheric 
chemistry and the ocean biogeochemistry. Currently this connection is missing for most 
of the climate-relevant gases.

• Biggest challenge: the lack of quantitative and mechanistic understanding of the 
biogeochemical processes that control the production and removal of these 
compounds in the seawater.
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Ocean biogeochemistry control: current

• Old-fashioned “Bottom-up” approach (sort of):

 Acetaldehyde (CH3CHO): photochemical production from the colored dissolved 
organic matters (CDOM) in the seawater, coupled to the atmospheric model. 

 This CDOM photochemistry framework can certainly be expanded to other 
compounds  need help from the experimentalists.
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Example: air-sea exchange of CH3CHO

CDOM          CH3CHO          Bacteria
UV

Production rate (P): Kieber et al 1990
Bacteria turnover time (τ):Dixon et al 2013
[CH3CHO]Seawater, steady-state = τ * P

• Satellite-based approach: Millet et al ACP (2010). 

• Diurnal surface UV (<320nm) net absorption (CESM)

• CH3CHO production from CDOM (Kieber et al 1990)
and bacteria-induced turnover timescale updated 
based on recent study (Dixon et al JRL 2013)

Air-sea exchange

* SeaWiFS: monthly climatology
** Ocean mixed layer depth: CESM 
large ensemble B1850C5CN (fully-
coupled control run)
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Example: air-sea exchange of CH3CHO

Flux measurements used for model validation:
 Schlundt et al (2017)
 Yang et al (2014)  Eddy covariance
 Beale et al (2013)
 Sinha et al (2007) mesocosm
 Zhou and Mopper (1997)

Wang et al, in review by GRL
AMS talk: https://ams.confex.com/ams/2019Annual/videogateway.cgi/id/51193?recordingid=51193

https://ams.confex.com/ams/2019Annual/videogateway.cgi/id/51193?recordingid=51193
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Ocean biogeochemistry control: current
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Ocean biogeochemistry control: current

• Old-fashioned “Bottom-up” approach (sort of):

 Acetaldehyde (CH3CHO): photochemical production from the colored dissolved 
organic matters (CDOM) in the seawater, coupled to the atmospheric model. 

 This CDOM photochemistry framework can certainly be expanded to other 
compounds  need help from the experimentalists.

 Fundamental challenge: lack of mechanistic understanding for many other species!
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Ocean biogeochemistry control: current

• Old-fashioned “Bottom-up” approach (sort of):

 Acetaldehyde (CH3CHO): photochemical production from the colored dissolved 
organic matters (CDOM) in the seawater, coupled to the atmospheric model. 

 This CDOM photochemistry framework can certainly be expanded to other 
compounds  need help from the experimentalists.

 Fundamental challenge: lack of mechanistic understanding for many other species!

• Statistical tricks to get around the fundamental challenges:

 Machine learning

 Need a lot of data  need help from the experimentalists.

 This is not ideal, but can get things done (i.e. can be operational) and has 
some predictability too. May provide insights into future research directions.

 Examples: air-sea exchange of NO and CHBr3.
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Example: air-sea exchange of NO

• Recent aircraft campaigns (ATom, CONTRAST, TORERO) suggest that in the remote marine 
boundary layer (especially in the tropics), both NO and NOy are consistently underestimate 
by models (Nicely et al JGR 2015; Anderson et al JGR 2017; Thompson and Murray et al, in prep.).

• Adding ocean emissions of alkyl nitrates doesn’t help (Fischer et al 2018)

• Box model shows that HOx chainlength is quite sensitive to NO in this range.
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NO in the remote MBL: underestimated

• The low bias is likely widespread. Especially in the tropical and 
southern hemisphere oceans, i.e. roughly 1/3 of the world’s ocean

• Is NO coming out of the ocean?

Note the scale is 
saturated at 100 pptv

Surface (<200m) 
measurements
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Ocean does emit NO, dominated by nitrite

• Surface seawater is supersaturated with NO (Torres et al 1993; Zafiriou et al 1981; 

Zafiriou et al 1980; McFarland et al 1979; etc).

• Olasehinde et al (EST 2010) reported NO production rates correlate perfectly 
with dissolved nitrite (NO2

- ). 

• Zakem et al (Nat Comm 2018): In general, nitrite is 
an intermediate of nitrification, the microbially
mediated oxidation of NH4

+.  

• Sources and sinks of nitrite in the surface seawater 
remains poorly understood. CESM2 BGC currently 
does not represent nitrite. What can we do? NO

NH4
+ NO2

- NO3
-

Air-sea 
exchange
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Seawater nitrite: Machine learning

• GLODAP v2 dataset (Olsen et al 2016) compiles over 700 scientific cruises since 
70s covering the global ocean. 

• This dataset is used to train a random forest algorithm which is then used to 
predict seawater nitrite (validated at this point), and finally to calculate NO 
production.
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Surface seawater nitrite: machine learning

• This approach captures large scale features of the observed surface seawater nitrite.

• FYI, near-explicit nitrate aqueous-chemistry (Mack and Bolton 1999; etc) in the euphotic 
zone can explain <10% of this observed nitrite. 

NO3
- (aq) + hv NO2 (aq) + OH (aq)

NO3
- (aq) + hv NO2

- (aq) + O3P (aq)

NO2
- (aq) + hv NO (aq) + OH (aq)

…
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Air-sea exchange of NO: present-day

• … but the impact (present-day) in the 
remote MBL is significant: average NOx

difference: +114%; average difference in 
HOx and O3: +10% both.

• No big deal globally, but quite 
substantial impact over the remote 
oceans (1/3 of the ocean coverage). 

• Our approach predicts that the global 
oceanic is a small net source of NO: 
0.9 Tg N per year. 

• Fairly small compared to other NOx

sources (present-day)
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Possibly bigger pre-industrial impacts?

• Algorithm trained using present-day data 
(GLODAP), then use Large Ensemble 
Community Project (LENS) dataset (Key et 

al BAMS 2015) to predict pre-industrial 
oceanic NO emissions. 

• Pre-industrial total NOx: ~16 Tg N per 
year (ACCMIP: Young et al ACP 2013).

• Ocean accounts for ~7% total NOx

emissions in pre-industrial days, but is a 
major source over the remote ocean!!!

• How does this affect the pre-industrial 
ozone budget and radiative forcing? 
working in progressCMIP6 Pre-industrial (year of 1850)

0.16 Tg N a-1 4.7 Tg N a-1

5.7 Tg N a-1

1.2 Tg N a-1
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Last example: air-sea exchange of CHBr3

• CHBr3 is the most important brominated short-lived O3-depletion substance in the 
stratosphere, and ocean is the dominant global source (Hossaini et al ACP 2016; etc). It’s 
production and removal in the seawater remains poorly understood.

• HALOCAT dataset compiles historical cruise observations of CHBr3 (and others too). 

• We couple the air-sea exchange of CHBr3 with the ocean BGC workhorse via machine 
learning, leading to improved predictability than current approaches (Ziska et al JAC 2017). 
Working in progress!
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Summary

• Ocean biogeochemistry control on the atmospheric chemistry: 
poorly represented in chemistry-climate models.

Siyuan Wang (siyuan@ucar.edu)

• We show two coupling approaches:

 A “bottom-up” model framework of CDOM photolysis.

 A machine-learning-based approach, connects the ocean BGC to the 
atmosphere, which is a compromised approach providing predictability.



11

Backup
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Influence 
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