

# Efficient In-cloud Removal of Aerosols by Deep Convection

#### Pengfei Yu

Karl D. Froyd, Robert W. Portmann, Owen B. Toon, Saulo R. Freitas, Charles G. Bardeen, Charles Brock, Tianyi Fan, Ru-Shan Gao, Joseph M. Katich, Agnieszka Kupc, Shang Liu, Christopher Maloney, Daniel M. Murphy, Karen H. Rosenlof, Gregory Schill, Joshua P. Schwarz, and Christina Williamson

NOAA ESRL; University of Colorado at Boulder

## **Major Scientific Points**

- ATom data suggests that global aerosol mixing ratio drops by 1-4 orders of magnitudes from surface to the upper troposphere (salt, black carbon, dust).
- 2) Deep convections can efficiently remove aerosols in-cloud through secondary activation from the entrained air.
- 3) In the middle and upper troposphere, secondary formed particles including sulfate and organics dominate

# BC is efficiently depleted while lifted, it is well-known that global models generally overestimate BC in UT



#### Sea salt is efficiently depleted, and global model (CESM) overestimates by 3-4 orders of magnitude Atom Salt data: PALMS, Murphy et al., 2018, ACPD Tropics





#### Default Convective Transport in CESM: "Equilibrium State", no sub-grid scale loss at all!



# Convective Transport in GEOS-Chem (Wang et al., 2014): exponential decay (sub-grid)

$$f = 1 - e^{-\alpha k \varDelta z} \tag{1}$$

Wang et al., 2014, ACP

where k is a coefficient for conversion of cloud water to precipitation with values of  $5 \times 10^{-4} \text{ m}^{-1}$  over land and  $10^{-3} \text{ m}^{-1}$ over ocean, and  $\alpha$  is the fraction of aerosol mass incorporated

Constant k is 1 for hydroscopic aerosol: e.g. salt Constant k is 0 for hydrophobic aerosol: e.g. dust

Constant k is 0.5 for hydrophobic BC (Wang et al., 2014)

# Convective Transport in GEOS-Chem (Wang et al., 2014): exponential decay (sub-grid)



#### **CESM/CARMA: Sectional Aerosol Model**



Pengfei Yu et al., 2015, *JAMES* Bardeen et al., 2013, *JGR* Brian Toon et al., 1988, *JGR* 





Some features:

Sulfur Chemistry (WACCM, Mike Mills), Heterogeneous Chemistry SOA Chemistry (4-Bin VBS), Coupled with MG Water Cloud, Coupled with RRTMG Including Marine organics, biological organics

#### Modified Convective Transport in CESM-CARMA: Secondary activation



#### We applied the model fix in CESM-CARMA



BC

#### We applied model fix in CESM-CARMA



SALT

## Modified scheme improves Salt in all latitude bands



# Modified convective transport scheme improves Salt vs. H<sub>2</sub>O relation



# Modified Convective Transport scheme improves both CARMA and MAM



New







latitude

latitude

#### CARMA

#### MAM

Chris Maloney has applied the fix to MAM The modified convective transport scheme affects primary aerosol budget in the middle-upper troposphere

#### Primary Aerosol: POA, BC, Dust, Salt

#### Old Convective



# In the modified scheme: secondary particles (sulfate and organics) dominates in the middle-upper troposphere



# Mathematically...

#### Convective transport: ensembles of convective plume



on particle size, composition as well... need more measurements

Seems a consistent story on missing secondary activation in CESM

#### In Tropical UT

- Sea Salt... for sure (Murphy et al., Yu et al.) ~10<sup>4</sup>
- BC are subject to convective removal (Yu et al.) ~10-100
- Dust is removed efficiently (Froyd et al.) ~10<sup>2</sup>-10<sup>3</sup>
- POA is removed (Alma, Pedro, Jose, Schill)
- Effect on SOA and sulfate: within a factor of 2

# Not yet solved

- Convective Removal efficiency (secondary activation)?
  - Particle size dependent?
  - Particle composition dependent?
  - Time scale of aging of hydrophobic species? Days? Hours?

# Scientific Implications

- Aerosol budget in Polar regions, cloud, radiative effects?
- Primary aerosol lifetime?
  - How far they can transport?

Percentage overestimation (old-new)/new\*100



Dust budget in TTL, Asian summer monsoon: ice cloud formation/budget, radiative effects?

## Scientific Implications

Global Black carbon's radiative forcing overestimates by over a factor of two.



# Summary

- ATom data suggests that global aerosol concentration drops by 1-4 orders of magnitudes from surface to the upper troposphere.
- 2) Deep convections can efficiently remove aerosols in-cloud through secondary activation from the entrained air.
- 3) In the middle and upper troposphere, secondary formed particles including sulfate and organics dominate
- 4) We suggest global models might not need to include insoluble species for BC, dust and organics.
- 5) More in-situ measurements are needed to quantify the convective transport scheme.
- 6) Incorrect convective transport scheme overestimates BC's radiative forcing and aerosol budget over polar regions.

The modified convective transport scheme also improves total aerosol--->within a factor 2-3

#### **Total Aerosol**



μ

