Emergence of an equatorial mode of climate variability in the Indian Ocean under altered mean states

Martin Puy¹, P. DiNezio¹, Kaustubh Thirumalai²

CVCWG Winter Meeting February 27th, 2019

¹U. of Texas Institute for Geophysics, ²Brown University

An Indian Ocean El Niño

Martin Puy¹, P. DiNezio¹, Kaustubh Thirumalai²

CVCWG Winter Meeting February 27th, 2019

¹U. of Texas Institute for Geophysics, ²Brown University

Modern climate of the tropical oceans

Past and future mean states conducive for stronger variability in the IO?

CESM1

CMIP5 RCP8.5 scenario Multi-model mean

CMIP5 projections supported by historical observations

SST change

1980-2017 epoch minus 1901-1950 epoch

Both mean states are conducive for stronger equatorial SST variability

Change in SST variability July-August-September

Last Glacial Maximum

Future

Consistent link between changes in mean state and variability among models

Change in surface wind stress along the

Additional LGM simulations:

- ENSO disabled
- ENSO and IOD disabled

Equatorial variability independent from ENSO and IOD

Dynamics of equatorial mode resembling El Niño

Precursor Event peak April-May-June July-August-September

Composite event based on peak SSTA over the eastern equatorial IO from CESM1 LGM run with ENDO and IOD

diaablad

Equatorial mode currently inactive

Composite event based on western IO zonal wind precursor from ERA40 reanalysis. Thermocline depth anomalies from

Equatorial mode also active under greenhouse warming

Precursor April-May-June Event peak July-August-

Composite event based on western IO zonal wind precursor in RCP8.5 climate (2050-2100) from a subset of CMIP5 models.

Rainfall impacts

Conclusions

- Indian ocean capable of stronger SST variability,
- Associated with an equatorial mode resembling the Pacific El Niño:
 - Triggered by wind precursor in the western IO,
 - Communicated to eastern IO via Kelvin waves,
 - Amplified by a favorable mean state with equatorial upwelling and shallow

Sea-surface temperature variability in boreal summer

Pattern of warming explains rainfall predictions

Multi-model prediction for year

Large uncertainty among models

Zheng et. al 2013

Shading shows one standard deviation of inter-

Large uncertainty in variability change

Zheng et. al 2013

Spatio-temporal evolution of equatorial mode resembles El Niño

Seasonally reversing winds along the equator

ERA interim (1980-

Strong air-sea coupling and SST variability restricted to the SE Indian Ocean

Precursor May-June

Peak September-October

Saji *et al.* 1999