The tropical impacts of projected Arctic and Antarctic sea ice loss

Mark England, Columbia University Lantao Sun, NOAA/ESRL Clara Deser, NCAR Lorenzo Polvani, Columbia University and LDEO

The Arctic is only half the story

Both Arctic and Antarctic sea ice loss will have important tropical impacts

-1.2 -0.9 -0.6 -0.3

0.9 1.2 Precip. [mm/day] 0.3 0.6

Motivation

Motivation

Projected Arctic sea ice loss shown to have important global effects ('mini global warming signal')

Deser et al., 2015 [J. Climate]

There is a clear tropical response to projected Arctic sea ice loss

This tropical response emerges after a large instantaneous amount of Arctic sea ice loss after ~30 years. (C)

-60

—

81

(e)

Wang et al., 2018 [GRL]

 When realistic, transient Arctic sea ice loss is imposed, the tropical response is still robust but takes longer to detect.

Sun et al., 2018 [J. Climate]

Address the following questions:

- sea ice loss?

Is there an important tropical response to Antarctic sea ice loss? If so, does it reinforce or weaken the tropical response to Arctic

Previous work

- latitudes.

England, M., L. Polvani, and L. Sun (2018), Contrasting the Antarctic and Arctic atmospheric response to projected sea ice loss in the late 21st Century, Journal of Climate, **31**, 6353-6370, doi: 10.1175/JCLI-D-17-0666.1

• Atmosphere-only runs with WACCM to investigate the effect of projected end of the century Arctic and Antarctic sea ice loss Without ocean coupling, response is limited to mid- and high-

Previous work

-0.75 -0.5 -0.25 0.25 0.5 0.75 1.5 4 7 10 2

England et al., 2018 [J. Climate]

MOCE

Community Earth System Model (CESM) Whole Atmosphere Community Climate Model (WACCM):

- High top model which participated in CMIP5
- Ran in fully coupled mode
- 2° by 2.5° horizontal resolution

Simulates climatological Arctic and Antarctic sea ice conditions well

•66 vertical levels with model lid extending up to lower thermosphere

Experimental setup

- Perform four time-slice experiments, each for 350 years, discarding first 100 years
- Target future sea ice conditions averaged from three members of WACCM run out to 2100 under RCP 8.5 conditions.
- Sea ice is perturbed using the ghost forcing method (see Deser et al., 2015 [J. Climate]; Tomas et al., 2016 [J. Climate]; Screen et al., 2018 [Nat. Geosci.])
- All other forcings (CO₂, ODSs etc.) are kept at 1955 values.

Experiments

Atmosphere-only runs

Experiment	Arctic	Antarctic	Years	
Control	1955-69	1955-69	150	
Melt Arctic	2085-99	1955-69	150	
Melt Antarctic	1955-69	2085-99	150	

England et al., 2018 [J. Climate]

 $\Delta Arctic$

 $\Delta Antarctic$

Experiments

Atmosphere-only runs

Experiment	Arctic	Antarctic	Years	Experiment	Arctic	Antarctic	Yea
Control	1955-69	1955-69	150	Control	1955-69	1955-69	25
Melt Arctic	2085-99	1955-69	150	Melt Arctic	2085-99	1955-69	25
Malt Antarctic	1055 60	2025 00	150	Molt Antorctic	1055 60	2025 00	25
Men Antarctic	1933-09	2003-99	130	Men Antarctic	1933-09	2003-99	
				Melt both	2085-99	2085-99	25

England et al., 2018 [J. Climate]

Fully coupled runs

Sea ice loss

Sea ice loss

Annual mean temperature response

Precip. Response in DJF

Precip. Response in DJF

Precip. [mm/day]

d) Combined Arctic and Antarctic sea ice loss (A & AA)

Northward Heat Transport

Total NHT

Atmosphere NHT (atm. only)

Northward Heat Transport

Ocean NHT

Atmosphere NHT

Summary

The tropical response to Antarctic sea ice loss is as large as the tropical response to Arctic sea ice loss.

- Together, Arctic and Antarctic sea ice loss is ~ 25% of projected tropical
- to Arctic sea ice loss.
- The signal from the poles is mostly carried to the tropics by the ocean. cross-equatorial atmospheric energy transport.

surface temperature change and ~30% of precipitation change from RCP8.5 The response to Antarctic sea ice loss is remarkably similar to the response

Interestingly Antarctic sea ice loss, but not Arctic sea ice loss, causes some

Sea ice climatology

Climatology 1979-2000

Additivity?

Additive

Full run

Error

AMOC strength

