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MCSs in Large-scale Context
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Fraction of PR rainfall in Mesoscale Convective Systems
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TRMM data indicate that MCSs are;

Building blocks of the tropical water cycle, multiscale convective variability, etc.
Embedded in meteorological phenomena that confound GCMs
Provide >50% of tropical precipitation, >70% in certain regions



Methodology

* Impressive progress made over half-a-century in our knowledge of organized
convection processes (notably MCSs) via field & satellite observations, cloud-
system simulations, and dynamical models.

« Organized convection is missing from GCMs, being neither resolved nor
parameterized despite a key process in weather and climate.

« Mesoscale convective system parameterization a.k.a. multiscale coherent
structure parameterization (MCSP) incorporate physical & dynamical properties
of moist convective organization.

« Effects of a prototype MCSP on precipitation distribution, convection-wave
interaction, and the MJO in CAM 5.5 provides proof-of-concepit.

Self-similar organized moist convection features important upscale effects (Moncrieff 2004)
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Basic Questions

Is organized convection parameterizable?
What are the key physical & dynamical principles?
What’s the minimalist prototype parameterization?

How does prototype parameterization affect GCMs?



Approximate Heat & Momentum Transport Moist
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Three Basic Principles




Multiscale Coherent Structures
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Slantwise Layer Overturning
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Tropospheric layers exchanged, distinct from local turbulent mixing

Mesoscale pressure gradient (Ap) & vertical shear are forms of energy
additional to CAPE:

= Available kinetic energy AKE = % (Ug - ©)?
- Pressure-gradient work APG = Ap/p

Key mean-state parameters, R = CAPE/AKE & E = APG/AKE

Distinctive non-diffusive heat & momentum transport



Lagrangian Dynamical Models

Lagrangian slantwise layer overturning models
approximate coherent structures that propagate
steadily in system-relative coordinates and also

incorporate bothersome partial derivatives: -
D a [ ]
D_t - + _y 5 [ Field of Cumulus

* Transform the nonlinear equations into exactly integrable form, DF;/Dt=0
» Integration along trajectories () provides a set of conserved quantities, F; = C;(y)
« Lagrangian models provide transports of mass, energy, momentum, vorticity, etc.

* Cloud-system resolving model & field-campaign analyses provide verification



Prototype MCSP

Canonical formulation

- 1stand/or 2"d baroclinic (top-heavy) mesoscale heating
- 18t baroclinic acceleration by momentum transport

Add the “missing process” of mesoscale slantwise layer overturning
to the existing cumulus parameterization, i.e.,

o) o) o)
[E] total — [E]cumulus + [g]mesoscale

Large-scale effects of organized convection unambiguously measured
as differences between GCM runs with & without MCSP

Minimal computational overhead



Prototype Heat & Momentum Transport
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Effects of MCSP on Annual Precipitation (8-years)
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EFFECTS OF MCSP: DIFFERENCE BETWEEN CAM RUNS WITH & WITHOUT MCSP
Moncrieff, Liu, and Bogenschutz (2017)




Effects of MCSP on Tropical Waves (8 years)
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Conclusions

 Prototype MCSP:

- Organized convection indeed a ‘parameterizable’ process
Precipitation, convection-wave interaction, MJO consistent with TRMM
Organized heat & momentum transport effects are distinct
Unified cumulus & organized convection parameterization
Computationally efficient, useable in long-run GCMs
Implement in E3SM, focus on momentum transport

* Next-gen MCSP :

Incorporate shear selection criteria

Investigate impact on coupled GCMs

Cumulonimbus -> MCS -> Supercluster invariance
Scale-selection mechanisms for upscale evolution
Implications for convective parameterization ‘gray zone’
Organized convection in subseasonal-to-seasonal context
Gravity-wave generation by propagating convective systems
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