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MCSs in Large-scale Context

TRMM data indicate that MCSs are:

• Building blocks of the tropical water cycle, multiscale convective variability, etc.

• Embedded in meteorological phenomena that confound GCMs

• Provide >50% of tropical precipitation, >70% in certain regions



Methodology
• Impressive progress made over half-a-century in our knowledge of organized

convection processes (notably MCSs) via field & satellite observations, cloud-

system simulations, and dynamical models.

• Organized convection is missing from GCMs, being neither resolved nor

parameterized despite a key process in weather and climate.

• Mesoscale convective system parameterization a.k.a. multiscale coherent

structure parameterization (MCSP) incorporate physical & dynamical properties

of moist convective organization.

• Effects of a prototype MCSP on precipitation distribution, convection-wave

interaction, and the MJO in CAM 5.5 provides proof-of-concept.
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Self-similar organized moist convection features important upscale effects (Moncrieff 2004)  



Basic Questions

• Is organized convection parameterizable?

• What are the key physical & dynamical principles?

• What’s the minimalist prototype parameterization? 

• How does prototype parameterization affect  GCMs?

•
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Three Basic Principles
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Multiscale Coherent Structures
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Slantwise Layer Overturning  

• Tropospheric layers exchanged, distinct from local turbulent mixing

• Mesoscale pressure gradient (∆𝐩) & vertical shear are  forms of energy 

additional to CAPE:

- Available kinetic energy AKE = 
𝟏

𝟐
(𝑼𝟎 - 𝒄)𝟐

- Pressure-gradient work  APG = Τ∆𝒑 𝝆

• Key mean-state parameters,  R = CAPE/AKE & E =  APG/AKE

• Distinctive non-diffusive heat & momentum transport  



Lagrangian Dynamical Models

Lagrangian slantwise layer overturning models 
approximate coherent structures that propagate 
steadily in system-relative coordinates and also 
incorporate bothersome partial derivatives:
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• Transform the nonlinear equations into exactly integrable form,  Τ𝑫𝑭𝒊 𝑫𝒕 = 0

• Integration along trajectories (𝝍) provides a set of conserved quantities, 𝑭𝒊 = 𝑪𝒊 𝝍

• Lagrangian models provide transports of mass, energy, momentum, vorticity, etc.

• Cloud-system resolving model & field-campaign analyses provide verification 



Prototype MCSP 
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Effects of MCSP on Annual Precipitation (8-years)

1st Baroclinic momentum transport 

2nd Baroclinic heating 

Momentum transport & heating  

EFFECTS OF MCSP: DIFFERENCE BETWEEN CAM RUNS WITH & WITHOUT MCSP   



Effects of MCSP on Tropical Waves (8 years)

(𝜶𝟏 = 0, 𝜶𝟐 = 1)



Conclusions

• Prototype MCSP:

- Organized convection indeed a ‘parameterizable’ process

- Precipitation, convection-wave interaction, MJO consistent with TRMM 

- Organized heat & momentum transport effects are distinct 

- Unified cumulus & organized convection parameterization 

- Computationally efficient, useable in long-run GCMs      

- Implement in E3SM, focus on momentum transport 

• Next-gen MCSP :

- Incorporate shear selection criteria

- Investigate impact on coupled GCMs

- Cumulonimbus -> MCS -> Supercluster invariance

- Scale-selection mechanisms for upscale evolution 

- Implications for convective parameterization ‘gray zone’ 

- Organized convection in subseasonal-to-seasonal context

- Gravity-wave generation by propagating convective systems 
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