Boulder, C olorado,US

(ETH-Zurich)

Mitchell et al (1987)
Boer (1993)
Held and Soden (2006)
many others
Trenberth (1999)
Allen and Ingram (2002) many others

What do we talk about when we're talking about extreme precipitation?

- Impactful?
- Meets a statistical definition?
- 90-something percentile of cdf: $95^{\text {th }}, 99^{\text {th }}, 99.9^{\text {th }} \ldots$
- Wet days or all days (Schär et al 2016)
- Maximum day per year (rx1day)
[interesting discussion by Stephenson 2008]

The definition of extreme precipitation matters when we quantify how it responds to global warming

Pendergrass (2018) Science

What do we talk about when we're talking about extreme precipitation?

- How uneven is precipitation?
- We will quantify this
- You will see that the lines are blurred - a large fraction of precipitation volume falls in events sometimes considered extreme

Some previous work

- Observed trends in the contribution of extremes to total precipitation (US focused)
- Karl and Knight (1998), Semenov and Bengtsson (2002), Groisman et al (2005), ...
- Unevenness of precipitation - Detection \& Attribution
- Quantified by Gini coefficient - Konapala et al (2017)

Precipitation data (Daily)

- Station observations
- Global Historical Climatology Network - Daily (GHCN-D), Global Climate Observing System Surface Network
- Satellite-based observations
- TRMM 3b42 gridded product
- Climate model simulations
- CMIP5, historical and RCP8.5 (high future emissions) scenarios
- 1999-2014 and 2086-2100 periods

Cumulative fraction of precipitation

GHCND stations, 1999-2014

Each station
Median of stations

Cumulative fraction of precipitation

Days in which $1 / 2$ of precip falls

Days in which $1 / 2$ of precip falls

Days in which $1 ⁄ 2$ of precip falls

12 days

Wettest 5 days

51015202530405060

Wettest 2 days

247101520304050

Wettest day

Wettest day: by season

Percentile above which half of precip falls

GHCND, 1999-2014

Rain amount survival function or 1 - cumulative rain amount distribution

Percentile above which $1 / 2$ of precip falls

Median:

Rain amount survival function

Fraction of precip falling above the $95^{\text {th }}$ percentile

Rain amount survival function

Fraction of precip falling above the $95^{\text {th }}$ percentile

Rain amount survival function

Fraction of precip falling above the $95^{\text {th }}$ wet-day percentile

 12 days

Multi-model median
Median of grid points corresponding to stations

12 days 23 days

Multi-model median
Median of grid points corresponding to stations

12 days 23 days Models underestimate unevenness

Multi-model median
Median of grid points corresponding to stations

Models underestimate unevenness
 - Mostly due to resolution

Multi-model median
Median of grid points corresponding to stations

How will unevenness respond to warming?

How will unevenness respond to warming?

How will unevenness respond to warming?

How will unevenness respond to warming?

How will unevenness respond to warming?

How will unevenness respond to warming?

How will unevenness respond to warming?

How will unevenness respond to warming?

Multi-model median Land median

Warming

 increases unevennessMulti-model median
Land median

Take-home messages

- Precipitation falls unevenly
- At observing stations, half of precipitation falls in the wettest 12 days each year
- In response to warming, 97% of models project increasing unevenness
- A large fraction of precipitation and its change fall in events often considered extreme
- We should work on reconciling our narratives for precipitation change by considering the distribution

Questions / C omments?

apgrass@ucar.edu

Multi-model median Land median

There is compensation between extreme and non-extreme precipitation across CMIP5 models

Models with larger increases in extreme precipitation have smaller increases (or decreases) in nonextreme precipitation

Highlights importance of global energetics for studying precipitation change

Thackeray et al., (2018), GRL

