A role for barotropic eddymean flow feedbacks in the zonal wind response to sea ice loss and Arctic Amplification BRYN RONALDS CVCWG FEB. 27TH 2019

Eddies increase jet speeds in response to sea ice loss

BRYN RONALDS CVCWG FEB. 27th 2019

Background

In response to Arctic amplification and sea ice loss:

- Zonal mean eddy-driven jet stream weakens & shifts equatorward
- Big regional & seasonal differences
- North Atlantic jet generally weakens, but North Pacific jet strengthens

CCSM4: LOWICE - CONTROL

CCSM4: LOWICE - CONTROL

CCSM4: LOWICE - CONTROL

CCSM4: Zonal mean U at 700 hPa

CCSM4: Zonal mean U at 700 hPa

CCSM4: Zonal mean U at 700 hPa

Idealized model experiment

Local easterly wind anomalies due to thermal wind balance $\sqrt{}$

- Approximate this as an easterly torque (previous work)
- Go in the barotropic model and create two experiments:
 - North Pacific (stirring 30N, torque 72N)
 - North Atlantic (stirring 45N, torque 60N)

Direct response

Direct response

Direct response

Direct response + eddy feedbacks

Direct response + eddy feedbacks

Direct response + eddy feedbacks

Eddies act to increase jet speed

► HOMṡ

- Eddies influence the mean flow via wave breaking
- ▶ i.e. eddy momentum flux convergence into the jet core
- So let's take a look at the wave breaking

Can use the refractive index, K*, to plot the critical and reflective profiles as a function of phase speed and zonal wavenumber

- Can use the refractive index, K*, to plot the critical and reflective profiles as a function of phase speed and zonal wavenumber
- Critical profile: wave breaking latitudes

$$c = \bar{u}$$

- Can use the refractive index, K*, to plot the critical and reflective profiles as a function of phase speed and zonal wavenumber
- Critical profile: wave breaking latitudes

 $c = \bar{u}$

Reflective profile: waves are turned back, reflected

$$c = \bar{u} - \cos(\phi) \frac{\hat{\beta}}{k^2}$$

- Can use the refractive index, K*, to plot the critical and reflective profiles as a function of phase speed and zonal wavenumber
- Critical profile: wave breaking latitudes

 $c = \bar{u}$

Reflective profile: waves are turned back, reflected

 $c = \bar{u} - \cos(\phi) \frac{\hat{\beta}}{k^2}$

Meridional shear of planetary vorticity + relative vorticity

- Can use the refractive index, K*, to plot the critical and reflective profiles as a function of phase speed and zonal wavenumber
- Critical profile: wave breaking latitudes

 $c = \bar{u}$

Reflective profile: waves are turned back, reflected

$$c = \bar{u} - \cos(\phi \frac{\hat{\beta}}{k^2} \frac{\text{Meridional shear of planetary vorticity + relative vorticity}}{\text{Zonal wavenumber}}$$
(pick this and plot c)

Changes in reflective profiles due to torque:

Waves can reach critical latitude on P-flank in TOTAL

= increased wave breaking on P-flank

Some of the waves that were reflected in NoTRQ broke in the jet core

= decreased wave breaking in jet core

Changes in critical profiles due to torque:

Critical latitude is closer to jet core/wave source region

<u>Changes in reflective profiles due to torque:</u>

Waves can reach critical latitude on P-flank in TOTAL

= increased wave breaking on P-flank

Some of the waves that were reflected in NoTRQ broke in the jet core

= decreased wave breaking in jet core

Waves that were trapped in NoTRQ can propagate in TOTAL

= increased wave breaking on EQ-flank

Summary

Using zonally symmetric barotropic model:

- ▶ Direct impact of sea ice loss = weaken $\nabla_v T$ = easterly wind anomalies
- Apply easterly torque in model
- Separate direct response of winds to the torque versus the eddies
- ► Two experiments:
 - 1. North Pacific jet: strengthens b/c eddies
 - 2. North Atlantic jet: weakens b/c direct response, eddies still try to strengthen