Køge Bugt: Evidence of a Greenland Firn Aquifer Influencing Tidewater Glacier Dynamics?

Ryan Cassotto¹, Michael J Willis¹, Michael MacFerrin¹, Clément Miège², Michael Bevis³

¹ Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO ² Rutgers University, New Brunswick, NJ ³ School of Earth Sciences, Ohio State University, Columbus, OH

> Land Ice Working Group National Center for Atmospheric Research

February 4, 2019

Cooperative Institute for Research in Environmental Sciences

Køge Bugt - Introduction

- 3 TWG systems •
 - Køge North (Pamiagtik Glacier)
 - Køge Central (Køge Bugt Glacier)
 - Køge South (Havhestens Bugt Glacier) •
- Køge Central (3rd) and Køge South (7th) highest discharge in Greenland (Enderlin et al, 2014)

- Small retreat for most of 20th century except for small re-advance between 1972 – 1981 (Bjørk et al, 2012)
- Minimal retreat during Holocene (*Dyke et al, 2017*); suggest physical setting ۰ controls response to external forcing.
- Submarine beds vulnerable to warm Atlantic Water (Millan et al, 2018) •

Cooperative Institute for Research in Environmental Sciences SITY OF COLORADO BOULDER and NOAA

Køge Bugt - Introduction

- 2003-09: experienced thinning-thickening-thinning pattern (Csatho et al, 2014)
- Køge South:
 - Seasonal speed variations triggered by melt, later sustained by bed topography and ice dynamics. (Moon et al, 2014)
- Køge Central:
 - Lacks seasonal variability and a response to melt (*Moon et al, 2014*)
 - Two major slowdown events occurred in recent years coincide with re-advance (*Joughin et al, 2018*)
 - Large along-flow variability in sliding, suggesting a complex relationship with meltwater (*Stearns & van der Veen, 2018*)

Cooperative Institute for Research in Environmental Sciences

Motivation:

- "What's going on at Køge Central?"
- What roles, if any, do the ice mélange and the firn aquifer play in ice dynamics?
- Why do glaciers in the same fjord with similar bed and ice surface geometries exhibit such different flow characteristics?

Approach: Generated comprehensive record of ice dynamics

- Speeds: 3 NASA derived datasets
 - MEaSUREs Radar (Joughin et al, 2011)
 - MEaSUREs Optical (Howat, 2017)
 - GOLIVE (Scambos et al, 2016)
- Terminus Positions
 - Landsats 1 & 5 (60-m)
 - Landsats 7 & 8 (15-m)
 - Sentinel-2 (10-m)

- Surface Elevations (Ice Thicknesses)
 - Time-tagged ArcticDEM

Cooperative Institute for Research in Environmental Sciences

Terminus History

Køge North: Stable

• 1990 – 2000: Small ~1 km retreat

Køge Central: ~3 km retreat

- 1972 1998: Advanced position, ~750-m variations
- 1998 2003: Stable
- 2003 Present: Large (>1 km), multi-year variability

Køge South: ~1.2 km retreat

- 1972 1992: Advanced position, ~500-m variations
- 1992 2003: Stable
- 2003 Present: Increased annual variability

Cooperative Institute for Research in Environmental Sciences

Terminus Speed

Cooperative Institute for Research in Environmental Sciences

Multi-year variability

- Prolonged increase in speed followed by rapid slow down
- Slowdowns initiate in summer and occur over 6-9 months
- 2002 and 2012 slowdowns coincide with peak melt years (Steffen et al, 2004; Nghiem et al, 2012)

Cooperative Institute for Research in Environmental Sciences

Cooperative Institute for Research in Environmental Sciences

Coincident speed reductions, terminus advance & ice

Large scale dynamic thickening events

ArticDEM Elevation Difference (m)

Recall, Køge Central:

- lacks any melt-induced seasonal changes in ice flow. (Moon et al, 2014)
- Large along-flow variability in sliding parameter; suggests complex relationship with melt

Q: What mechanism(s) are driving these changes?

Cooperative Institute for Research in Environmental Sciences

Firn Aquifer Driver?

- Perennial firn aquifer ~30 km upglacier (Forster et al, 2013)
- 2013
 - Water table increased 2 m
 - 4 km inland expansion

2012: FA levels lower (draining) \rightarrow glacier speeding up, thinning, and retreating

2013: FA levels <u>higher</u> (not draining and/or filling) --> <u>glacier</u> <u>slowing, thickening, & advancing</u>

2014: FA again lower (draining) \rightarrow glacier again accelerating, thinning, and retreating.

Cooperative Institute for Research in Environmental Sciences

Conceptual Model: Firn aquifer mechanism for ice dynamics

CIRES

Cooperative Institute for Research in Environmental Sciences

Conceptual Model: Firn aquifer mechanism for ice dynamics

Mode 2: Excessive melt inundates the hydrologic system, which incises large subglacial channels, decreases basal water pressure, increases effective pressure, and slows the glacier

Cooperative Institute for Research in Environmental Sciences

Additional Evidence

- Daily MODIS 250-m images
- Proglacial fjord typically ice free Jan Mar
- *EXCEPTIONS:* 2007, 2013 & 2016 (years with a slower, thickening, and advancing terminus)
- This might suggest:
 - 1) an ice mélange influence
 - 2) low subglacial discharge (FA not draining?)

Cooperative Institute for Research in Environmental Sciences

Additional Evidence

Hydraulic Potential

• $\Phi = \rho_w g Z_b + \rho_i g H k_p$

CIRES

Cooperative Institute for Research in Environmental Sciences

Remaining Questions

- Do variations in the firn aquifer coincide with dynamic changes in 2003, 2007 and 2016?
- What mechanism(s) facilitate firn aquifer discharge/recharge?
- How does annual variability in surface melt affect firn aquifer?
- What is the buffering capacity of the firn aquifer?
- What role, if any, does ice mélange play in dynamic change at Køge Central?

Future Work

- Simulate dynamic changes using an ice physics basal hydrology coupled model; plan to use SHaKTI
- Collect additional in situ & satellite remote sensing data of firn aquifer variability (L-Band SAR, e.g. NiSAR?)
- Study regional climate models for patterns of melt, snow, precip, etc...
- Generate thermal SST record of fjord surface temperatures (winter ice mélange proxy)
- Investigate plume detection methods

Cooperative Institute for Research in Environmental Sciences

<u>Summary</u>

- Three Køge Bugt tidewater glaciers exhibit very different flow characteristics despite close proximity (<20 km apart) and similar bed and surface geometries
- <u>Køge North</u>: Slowest, stable and lacks significant dynamic change.
- <u>Køge South</u>: Moderate speeds, exhibits small scale seasonal variations in flow, ice thickness, and terminus location; sensitivity to melt (Moon et al, 2014).
- <u>Køqe Central</u>: Fastest, lacks seasonal variability, but exhibits prolonged periods of accelerated flow, dynamic thinning and retreat. These multi-year processes abruptly lead to decelerated flow, ice thickening, and re-advance before returning to previous mode.

Køge Central	Køge North
Køge South	

Cooperative Institute for Research in Environmental Sciences

<u>Summary</u>

- Three Køge Bugt tidewater glaciers exhibit very different flow characteristics despite close proximity (<20 km apart) and similar bed and surface geometries
- <u>Køge North</u>: Slowest, stable and lacks significant dynamic change.
- <u>Køqe South</u>: Moderate speeds, exhibits small scale seasonal variations in flow, ice thickness, and terminus location; sensitivity to melt (Moon et al, 2014).
- <u>Køqe Central</u>: Fastest, lacks seasonal variability, but exhibits prolonged periods of accelerated flow, dynamic thinning and retreat. These multi-year processes abruptly lead to decelerated flow, ice thickening, and re-advance before returning to previous mode.
- **Køge Central changes coincide with variations in the firn aquifer, first known evidence of firn aquifer influence on TWG dynamics**
- **Firn aquifer induced large scale changes in ice dynamics along Køge Bugt produced 3rd highest volume of ice dynamic losses in Greenland 2000 – 2012**

Cooperative Institute for Research in Environmental Sciences

Thank you!

Questions?

Cooperative Institute for Research in Environmental Sciences

EXTRA SLIDES

Cooperative Institute for Research in Environmental Sciences

Cooperative Institute for Research in Environmental Sciences UNIVERSITY OF COLORADO BOULDER and NOAA

•
$$\Phi = \rho_w g Z_b + \rho_i g H k_p$$

Cooperative Institute for Research in Environmental Sciences

Hydraulic Potential

• $\Phi = \rho_w g Z_b + \rho_i g H k_p$

Cooperative Institute for Research in Environmental Sciences

Bed Geometries

Similar bed profiles along lower 22 km:

- 22 km (behind calving front): ~400 m ASL
- 3 km: at sea level
- 0-3 km: below sea level

Major Difference:

- Køge Central: Retrograde bed behind calving front
- Køge South: Prograde to the calving front

Cooperative Institute for Research in Environmental Sciences

Køge North

Negligible change in surface elevation ٠

Perhaps seasonal

٠

.

٠

Cooperative Institute for Research in Environmental Sciences

Surface elevation change from Mar 2011

• 1.6 yrs: -12 m 29 Oct 2012

Cooperative Institute for Research in Environmental Sciences

Surface elevation change from Mar 2011

1.6 yrs: -12 m 29 Oct 2012

Winter Thickening

• 2.2 yrs: +46 m 30 Jun 2013

CIRES

Cooperative Institute for Research in Environmental Sciences

RES

Surface elevation change from Mar 2011

Cooperative Institute for Research in Environmental Sciences

RES

Surface elevation change from Mar 2011

Cooperative Institute for Research in Environmental Sciences

Surface elevation change from Mar 2011

CIRES

Cooperative Institute for Research in Environmental Sciences

Surface elevation change from Mar 2011

Cooperative Institute for Research in Environmental Sciences

- Multiple large-scale thickening events: Winters 2012 & 2016
- Thinning <u>winter</u> 2014
- Thickening summer 2016

Surface elevation change from Mar 2011

Cooperative Institute for Research in Environmental Sciences

