Interaction between the North Atlantic Ocean and Greenland Ice Sheet during the present-future deglaciation

Carolina Ernani da Silva

Supervisors: Miren Vizcaino and Caroline Katsman

CoupledIceClim

TUDelft

Established by the European Commission

• Goal: Understand ice-ocean interaction in a global warming scenario

PhD Project

How Greenland ice sheet melting fluxes is affecting North Atlantic Ocean circulation in the present-future period?

TUDelft

What are the changes caused by a warmer ocean on the atmosphere and Greenland SMB ?

North Atlantic Ocean Circulation in CESM 2.0

North Atlantic Ocean Circulation in CESM 2.0

- B run all components active, except ice sheet
- Pre Industrial (PI) 1200 yrs
- 1% CO₂ 150 yrs

Surface Temperature

- OBS \rightarrow Polar Hydrographic Climatology 2 (PHC2)
- Warmer North Atlantic Ocean and Labrador Sea
- Cold Blob it can be seen in CESM 1.0 (20th simulation)

Surface Salinity

- Saltier North Atlantic Ocean
- Fresher Blob it can be seen in CESM 1.0 (20th simulation)

1% CO₂ - Surface Temperature

ŤUDelft

01-30

121-149

- 1pct 01-30 very similar to the PI
- Cold waters around Iceland and Labrador Sea

1% CO₂ - Surface Salinity

ŤUDelft

- 1pct 01-30 very similar to the PI
- Fresher waters around Iceland and Labrador Sea

11

1% CO₂ – Wind Stress

ŤUDelft

121-149

01-30

• Could affect the surface circulation

1% CO₂ - Surface Velocity

ŤUDelft

- Main currents well represented
- Maximum velocities in Labrador Sea \rightarrow displaced
 - In general, the surface current speed weakens

1% CO₂ - Surface Velocity – 200m

ŤUDelft

- Current speed weakens \rightarrow subsurface water spreading
- Convection site in the Labrador Sea might change (?)

14

1% CO₂ - AMOC

Upper Limit AMOC

- Weakens
- Shallower

ŤUDelft

AMOC Flux 26.5°N

Upper Limit AMOC well represented

Next (ongoing) steps

- Look the changes in vertical sections
- Identification of the water masses

Transects

ŤUDelft

K – Kangerlussuaq H – Helheim IC – Iceland J – Jakobshavn

Pre Industrial

Figure 5. Mean vertical sections of (a) potential temperature (°C, color) and (b) salinity (color), overlain by potential density (kg/m³, contours). The mean is comprised of data collected between 1990 and 2012. The 27.8 kg/m³ isopycnal, which indicates the top of the overflow layer, is highlighted in magenta. The mean locations of the shelfbreak and separated EGC fronts are indicated by arrows at the top of the plot, and the corresponding ranges are indicated by horizontal gray bars.

Mastrapole et al., 2017

CESM

ŤUDelft

19

Conclusion

- In general, CESM ocean component is really good.
- Some limitations we have to keep in mind.

Thank You!

Questions?

(Photo: Dirk Van As): http://sciencenordic.com/predicting-next-big-flood-greenland