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1.1 The End Permian Mass Extinction Event
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2. Objectives

* How did the seasonality change across the
PTB?

* How did phyto-geographic patterns change due
to changes in seasonality caused by aerosol and
CO, radiative forcing?

* How much radiative forcing is required to
simulate a climate consistent with the
reconstructed biogeographic patterns?
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3.1 Model Description and Boundary Conditions
for CCSM3

= A fully coupled comprehensive model, the Community
Climate System Model (CCSM3; Collins et al.,2005), is
applied for the climate sensitivity experiments.
Boundary Conditions

* Intensity of solar radiation: 2.1% reduced compared to
present day (Caldeira and Kasting, 1992), S =1338 W m

= Greenhouse gas concentrations (Kiehl and Shields, 2005)
CO,: 3550 ppmv
CH,: 0.7 ppmv
N,O: 0.275 ppmv

= QOrbital cycles: Eccentricity 0°, Obliquity 23.5°

» Vegetation cover following Rees et al., 1999

» Topography: Paleogeographic Atlas Project



3.2 Phytogeographical Analysis
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4.1 CCSM 3 Climate Model
Simulations
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4.2 Phyto-geographical Distribution and
CCSM3 simulations
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4.3 Correspondence Analysis
(Wuchiapingian Stage)

Summary
Proportion of Inertia
Singular Chi Accounted | Cumulati
Dimension Value Inertia | Square Sig. for ve
1 0.913 0.833 0.361 0.361
2 0.734 0.539 0.234 0.594
3 0.702 0.492 0.213 0.808
4 0.423 0.179 0.077 0.885
5 0.397 0.157 0.068 0.953
6 0.328 0.108 0.047 1.000
Total 2.308 | 1008.588 A 0.000° 1.000 1.000
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4.3 Correspondence Analysis
(Early-Triassic Stages)

Summary
Proportion of Inertia
Singular Chi Accounted
Dimension Value Inertia | Square | Sig. for Cumulative
1 0.836 0.699 0.314 0.314
2 0.795 0.632 0.284 0.598
3 0.770 0.593 0.266 0.865
4 0.390 0.152 0.068 0.933
5 0.298 0.089 0.040 0.973
6 0.246 0.061 0.027 1.000
Total 2.225 | 440.550 | 0.000° 1.000 1.000
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5. Conclusions

= The modeling results show significant
seasonality in temperature over the interior of
the continents, whereas seasonality of
precipitation is much smaller.

= As we moved towards a hothouse climate, there
was a significant decline in the diversity.
However, it is still not clear whether it was an
extinction or an evolutionary succession of
tolerant species.

* The multivariate statistical analysis ensures a
consistent interpretation of floristic patterns
which can be used to compare with or validate
climate simulations.
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6. Current Work and Future Outlook

= Set up paleo boundary conditions CESM 1.2 simulation with
FV1.9 2.5 and nominal 1° ocean .

= Update PTB topography using Torsvik et al.,(2012)
reconstruction.

= Update the aerosol forcing for PTB in collaboration with Ben
Black.

= Update the land surface parameterization by incorporation of
reconstructed biomes based on plant fossil data.

= Solar and orbital forcing will be taken from Kiehl and Shields
(2005).

= The CO, radiative forcing will be set to 4x PAL and 12x PAL.
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