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The Status Quo

(A) Rapid advances in modeling

(B) The data revolution:
especially satellite observations with TB-PB of data

→ a widening gap



A New Community Software Project

Element: Software: Data-Driven Auto-Adaptive Classification of
Cryospheric Signatures as Informants for Ice-Dynamic Models

- a project funded by the NSF Offices for Cyberinfrastructure for
Sustained Scientific Innovation (CSSI) and Arctic Natural Systems (ANS)

Two Levels of Complexity

1. Data-model comparison

2. Data-driven modeling using a parameterization approach

Cryospheric Areas

1. Land ice component

2. Sea ice component

Community Involvement!



Objectives and Software Components

(1) An auto-adaptive characterization and classification system
(Prototype: land ice surface types, crevasse classes, satellite image
data)

(2) Generalization of the characterization/classification system to other
data types

(3) Generalization of the characterization/classification system
generalized for another user community: Sea Ice research

(4) A pre-processor that facilitates transfer of the classification software
to new applications and data types

(5) Auto-adaptive data-driven modeling:

Development of an automated data model-link: Use location- and
time-dependent parameters from the classification to derive model
parameters

(6) Application of a metric to evaluate success of the data-model-link:
Spatial map comparison and optimization

(7) Development along several pilot studies in land ice and sea ice



Examples

1. Connectionist-geostatistical classification of surge-glacier
surfaces

2. Classification as an aid in model-data comparison

3. Classification as an aid in constraining basal sliding

4. Spatial comparison of results from data analysis and modeling
(The SeaRISE Project)

5. Sea-ice characterization and parameters in data analysis and
modeling



Crevasse Characterization

(a)

(b)

Crevasse characterization (mindist parameter) of LandSat-8 imagery on Jakobshavn Isbræ, Greenland.

(a) Landsat-8 image LC80090112014216LGN001. (b) Map of mindist parameter used to characterize size, spacing

and orientation of crevasses.



Crevasse Characterization and Classification

(a) (b) (c)

Classification of Landsat-8 data on Thwaites Glacier, Antarctica.
(a) Landsat-8 Panchromatic image of Thwaites Glacier.
(b) Characterization of surface roughness through derivation of the pond parameter.
(c) Neural network crevasse classification.



Connectionist-geostatistical classification of surge-glacier surfaces

(a) (b)

Crevasse types in Bering Glacier, identified using a Neural Network applied to
airborne image data. (a) Central Bering Glacier, (b) zoom into crossover.



Classification of Satellite Image Data from WorldView1

(a) Bering Glacier WorldView1 Data (March 21, 2011) (b) Crevasse Classes for Neural Network

(c) Neural Net Crevasse Classification (d) Classification Confidence



Constraining Model Parameters Using Surge Crevassing

1. Data Analysis: Measure crevasse distribution using a geostatistical
characterization parameter

2. Modeling: Full-Stokes model of ice dynamics during surge of Bering
Glacier

3. Data analysis criterion for crevassing: Parameter threshold

4. Criterion for simulated crevassing: Von Mises criterion, applied to
stress field

5. Map comparison method MAPCOMP applied to demonstrate that
the data-based and model-based criteria for crevassing match

6. Model-data comparison techniques yield a cost function

7. Stepwise optimization of the cost function leads to a constraint on
the basal sliding parameter



Physics in Bering Model

Governing Equations

Full-Stokes:

∇ · σ + ρg = ∇ · (τ − pI ) + ρg = 0,

∇ · u = tr(ε̇) = 0,

σ – stress tensor
p – pressure
ρ = 916.2kg/m3 – ice density
g = (0, 0,−9.81) – gravity vector
u – velocity vector

ε̇ = 1
2

(∇u + (∇u)T ) – strain-rate tensor

Glen’s flow law:

τ = 2ηε̇,

η – effective viscosity:

η =
1

2
A−1/n

ε̇
(1−n)/n
e

A = A(T ) – rheological parameter
T = 0◦C – constant temperature
ε̇e – effective strain-rate
n = 3 – Glen exponent

Boundary Conditions

Ice/atmosphere boundary –
stress-free boundary:

σ · ns = −patmns ≈ 0,

ns – surface normal vector

Ice/bedrock boundary – allow no
normal flux:

u · nb = 0

and a linear friction law:

σnti = βuti , i = 1, 2

β – linear friction coefficient
σnti = (σ · nb) · ti – basal shear stresses
uti = u · ti – basal velocities

ti (i = 1, 2) – unit tangent vectors
nb – unit surface normal vector pointing outward of the
bedrock surface

Lateral boundary
Similar to ice/bedrock only with a different friction
parameter β



Is crevassing observed and modeled at some location?

Observed
→

Modeled
←

Comparison Measures for
Crevasse Location
Total comparison nodes (N) = 1185

Total model-data agreement nodes
(green+yellow) (Nagree) = 1041

Total disagreement nodes (light blue
+ dark blue) (Ndisagree) = 144

Fractional agreement (
Nagree

N
) =

0.8785

Trantow and Herzfeld, JGR, 2018



Crevasse orientation comparison

I Areas of dark blue
show modeled
orientations in the
same bin as those
observed
(θ ≤ 11.25◦)

I Areas of green and
yellow show
disagreement of at
least 3 bins
(θ > 33.75◦)

I The number of
nodal locations
where crevasses
exist as agreed
upon by both the
model and
observations is
Ncrev = 928.

A map of crevasse orientation comparison where each data point is given by
|sin(θ)| where θ is the absolute difference between modeled and observed

crevasse orientations.

Trantow and Herzfeld, JGR, 2018



Spatial map comparisons via MAPCOMP

Fig

1

↔

Fig

2

↔

Fig 1. Map similarity (MAPCOMP)
comparison between the logpond map and
the von Mises stress map: measures of
crevassity? (lower value = more similarity)

Fig 2. Map similarity (MAPCOMP)
comparison between the logpond map and
the (negative of) ice thickness map:
importance of bedrock topography.

Trantow and Herzfeld, JGR, 2018



MAPCOMP: A Multivariate Map-Comparison Method for Spatial Evaluation of

Model Experiment and Model-Data Comparison

Figure 4. Schematic illustration of the
map-comparison method. F denotes the
MAPCOMP operator.

MAPCOMP Math

I Assume there are n maps/ model results/ experiment
results/ data sets to be compared (n input maps).

I The MAPCOMP operator calculates an algebraic semi-norm

in a space of
n(n−1)

2
, the number of comparisons possible.

I Uses a matrix functional at each grid node.

I The result is a single similarity map (or comparison map),
with values in [0,1]. Close to zero - good similarity; close to
one - high dissimilarity. → Indicates regions and processes
that may need improvement.

I Weighting options

I Options for missing-data handling

I Several methods for pre-analysis standardization to compare
the same or different variables/ units

I Use netcdf and other modeling standards

I MAPOPT - Optimization of parameters or testing of simple
functional relationships



MAPCOMP: 4 Models - 1 Variable (Velocity) -
Experiment: M1 (ice-ocean melt) [MAPCOMP for SEARISE]

︸ ︷︷ ︸

⇓

1

linear standardization, log colorscale for input maps
Results group by drainage basins: Largest for W and SE Greenland, where ocean-induced melt is highest.



Participating Models from SeaRISE

Model name SeaRISE
model
abbreviation

Developers References

Anisotropic Ice Flow Model
(AIF)

WWA1, WWA2 Wei Li Wang [Wang et al., 2012]

Community Ice Sheet Model ver-
sion 2 (CISM2)

CSM2 Stephen Price, William
Lipscomb

[Price et al., 2011,
Lemieux et al., 2011,
Bougamont et al., 2011,
Evans et al., 2012]

Elmer/Ice HSE1 Hakime Seddik [Seddik et al., 2012]
Ice sheet model for Integrated
Earth-System Studies (IcIES)

AAB1, AAB2 Ayako Abe-Ouchi, Fuyuki
Saito

[Saito and Abe-Ouchi, 2004,
Saito and Abe-Ouchi, 2005,
Saito and Abe-Ouchi, 2010,
Greve et al., 2011]

Ice Sheet System Model (ISSM) JPL2 Eric Larour, Math-
ieu Morlighem, Helene
Seroussi

[Morlighem et al., 2010,
Seroussi et al., 2011,
Larour et al., 2012]

Parallel Ice Sheet Model (PISM) UAF1 Ed Bueler, Andy As-
chwanden, Constantine
Khroulev

[Bueler and Brown, 2009,
Aschwanden et al., 2011]

Simulation Code for POLyther-
mal Ice Sheet (SICOPLIS)

RGR4 Ralf Greve [Greve et al., 2011,
Sato and Greve, 2012]

University of Maine Ice Sheet
Model (UMISM)

JFA1 Jim Fastook [Fastook, 1993]

1



MAPCOMP: Data-Model Comparison (and Weighting)
Constant Climate Control Run, 6 Models - 1 Data Set (Surface Height)

(a) (b)

Figure 1. MACOMP comparison of models and data both (a) unweighted and (b) weighted. Both maps compare the 5-km surface DEM
of Bamber et al. (2001) and the initial elevations in the CC (control) experiment for the CSM2, JFA1, JPL2, HSE1, UAF1 and RGR4 models.
(a) Weights all maps, both model and data, equally while (b) weights the input data by a factor of six while the remaining six models are
weighted equally by a factor of 1. In the similarity map, red areas around the periphery displaying perfect correlation correspond to ice-free
terrain in all inputs.

1

(a) unweighted (1,1,1,1,1,1,1) and (b) weighted (all 6 models weighted 1, data set weighted 6)



Sea Ice Example: Fram Strait – Ridging Processes

Flight tracks of the CASIE Experiment July/August 2009.

Data used here stem from flight 9 (marked blue).



CICE Model Runs For CASIE Flight Time (July 2009)
Deformed Ice Area Fraction

(a) Control Run

control µrdg = 5 m1/2

Cf = 10 Cf min = 10

1

(b) Sensitivity Study

from Herzfeld, Hunke, McDonald, Wallin, 2014



CICE-CASIE Comparison: Sensitivity Studies
Percent Deformed Ice Area from CICE and CASIE

25 CICE grid nodes over sea ice

(Herzfeld, Hunke, McDonald , Wallin, 2014)



CICE Parameterization Sensitivity Experiments

variable: area percent of ridged ice

parameters: control or cs - maxraft - murdg - cf - astar

row 1: lower value, row 2: higher value

row 3: arl data from laser altimeter data

variable: area percent of ridged ice

parameters: control - maxraft - murdg - cf - astar (lower - higher value)



Similarity Mapping: CICE-CASIE Model-Data Comparisons

1 model run, arl weighted 1 1 model run, arl weighted 1 10 model runs, arl weighted 10

variable: area percent of ridged/ rough ice

similarity measure: mapcomp similarity [0,1], low: good similarity

Result: Now we can see where modeled and measured rough ice areas match,
for each or all sensitivity studies. →

(1) Model-data comparison experiments (SIMIP)

(2) Model evaluation/ improvements

Next : larger regions and more data



Call for Participation

Questions? Negribreen, Svalbard


