

On the link between midlatitude wave guides, jet zonalisation, and equatorward shifted precipitation maximum at the Last Glacial Maximum

Marcus Lofverstrom University of Arizona

PaleoWG winter meeting, NCAR, 2019

Data evidence of equatorward shifted precipitation at LGM

PMIP3 simulations – DJF climatologies

Lines: 250 hPa zonal wind PI, LGM

Shading: precipitation LGM-PI

PMIP3 simulations – DJF climatologies

Lines: 250 hPa zonal wind **PI, LGM**

Shading: precipitation LGM-PI

LGM jets: - Stronger than PI - More zonal in

some models

PMIP3 simulations — DJF climatologies

Disclaimer: work in progress

Focus on the CCSM4 simulation from here on (Brady et al. 2013)

Broadly similar response in all models

Connection to atmospheric rivers? Yup...

Question: Why are the precipitation maxima shifted at the LGM?

Question: Why are the precipitation maxima shifted at the LGM?

Realization: Jet latitude is controlled by meridional wind

Analysis:

- 1: EOF analysis of meridional wind
- 2: Regression of fields onto EOF pattern

Eddy streamfunction regressed onto EOF 1 of mer. wind

Eddy streamfunction regressed onto EOF 1 of mer. wind

What's the connection to the N Atlantic jet stream?

Wind around high- and low-pressure systems (Northern Hemisphere)

Eddy streamfunction regressed onto EOF 1 of mer. wind

Wind around high- and low-pressure systems (Northern Hemisphere)

Quantifying LGM precipitation in Iberia

Eddy streamfunction regressed onto EOF 1 of mer. wind

EOF1 pattern of zonal wind (250 hPa) and precip.

Quantifying LGM precipitation in Iberia

Eddy streamfunction regressed onto EOF 1 of mer. wind

EOF 1 pattern accounts for 50-70% of total LGM winter precipitation in Iberia (derived from daily data)

Interpretation of LGM wave field

Eddy streamfunction regressed onto EOF 1 of mer. wind

Stationary wave number

$$K_s^2 \propto \frac{\beta - \partial_y \zeta}{U} = \frac{\beta_*}{U}$$

$$K_s^2 = K^2 \equiv k^2 + l^2$$

Interpretation of LGM wave field

Stationary wave number

$$K_s^2 \propto \frac{\beta - \partial_y \zeta}{U} = \frac{\beta_*}{U} = 5$$

$$K_s^2 = K^2 \equiv k^2 + l^2$$

Properties of wave field $\partial_y^2 \psi = \psi (K^2 - \beta_*/U)$ $k < K_s$ mer. propagation

 $k \ge K_s$ mer. evanescence (wave guide)

Conclusions

- Both proxy data and PMIP3 LGM simulations show comparatively wetter conditions in California and Iberia at the LGM (drier at higher latitudes)
- Leading EOF of mer. wind (LGM; ~20% var. explained) is a wave-number-5 wave-train in mid-latitudes (different from PI)
- Leading EOF is a zonal N Atlantic jet that brings precipitation to Iberia
- Leading EOF pattern accounts for 50-70% of total DJF precipitation in Iberia