Isotopic Signatures of Last Millennium Volcanic Eruptions in CESM

Samantha Stevenson¹ Bette Otto-Bliesner², Esther Brady², Jesse Nusbaumer³, Clay Tabor⁴, Robert Tomas², David Noone⁵, & Zhengyu Liu⁶

¹University of California, Santa Barbara; ²National Center for Atmospheric Research; ³NASA Goddard Institute for Space Studies; ⁴University of Connecticut; ⁵Oregon State University; ⁶The Ohio State University

Regional impacts of volcanism are severe

Fasullo et al. (2017)

Properties of eruptions often uncertain

CESM Last Millennium Ensemble

TABLE I. CESM-LME simulations. Additional information about the simulations including the forcing datasets, saved variables, diagnostics, model support and known issues can be found at the CESM-LME website (www2.cesm.ucar.edu/models/experiments/LME).

Expt	No. of runs	Solar variability	Volcanic eruptions	Land use	GHGs	Orbital changes	Ozone– aerosols
Full forcings	10	Transient 850–2005	Transient 850–2005	Transient 850–2005	Transient 850–2005	Transient 850–2005	Transient 1850–2005
Solar only	4	Transient 850–2005	None	*	*	*	1850
Volcanic only	5	*	Transient 850–2005	*	*	*	1850
Land use only	3	*	None	Transient 850–2005	*	*	1850
GHG only	3	*	None	*	Transient 850–2005	*	1850
Orbital only	3	*	None	*	*	Transient 850–2005	1850
Ozone– aerosol only	2	*	None	*	*	*	Transient 1850–2005

* Fixed at 850 values.

Otto-Bliesner et al. (2016), BAMS

Isotope-enabled CESM: "iLME"

Runs completed:

Greenhouse gas only (1) Volcanic aerosols only (2) Orbital forcing only (1) Solar insolation changes only (1) Full forcing (3)

iCESM description paper: Brady et al. (2019), submission to JAMES this month!

iLME "first results" paper: Stevenson et al. (2019), submission to Paleoceanography & Paleoclimatology this month!

Precipitation amount (contours) and precipitation δ^{18} O (colors) anomalies following tropical eruptions

Precipitation amount (contours) and precipitation δ^{18} O (colors) anomalies following tropical eruptions

 Enriched signature in Asian
monsoon region;
not entirely coincident with precipitation response

Precipitation amount (contours) and precipitation δ^{18} O (colors) anomalies following tropical eruptions

Strong depletion over Atlantic basin, eastern North America; not driven by precipitation amount

Atmospheric responses: likely AMO-related -

LME: AMO, ENSO responses latitudinally dependent

Surface air temperature anomalies, full (non-isotopeenabled) LME

Stippling = insignificant

Soil moisture

0-30cm soil moisture anomalies, JJA +1 after eruptions in different hemispheres

NH/TROP events: Monsoon suppression, western US wetting

SH events: Amazon drying, Caribbean/ African wetting

Soil moisture

Soil δ^{18} O

Soil moisture

Soil δ^{18} O

Salinity

Salinity anomalies, DJF +1-2 after eruptions in different hemispheres

NH/TROP events: Central Pacific freshening, Maritime Continent saltening

SH events: Eastern Pacific freshening

Salinity

Seawater δ^{18} O

Conclusions

Isotope-enabled LME: complete, soon to be publicly released Full-forcing, single-forcing experiments included

Post-eruption influences on precip, $\delta^{18}O_p$ often quite distinct: influence of AMO felt in $\delta^{18}O_p$ throughout the Atlantic basin, eastern North America

AMO responses differ depending on eruption hemisphere, as does ENSO (consistent with previous work)

Isotopic anomalies in soil moisture differ hemispherically as well; anomalies sometimes quite distinct from soil moisture balance

South Pacific Convergence Zone responses differ significantly between eruptions in differing hemispheres: NH eruptions have a stronger SPCZ signature

Possible to use isotope-enabled models to assess proxy network best suited to identify past eruption characteristics?