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Why? Who cares?

Climate dynamicists
Dynamical Core developers

+
Parameterization developers

Gain a comprehensive understanding of 
dynamical processes in the climate system 
without complex physics e.g., wave-mean 
flow interactions, strat-tropi coupling 

Gain a comprehensive understanding 
physical processes without the 
complicating dynamics e.g., understanding 
the behavior of convection under 
particular boundary forcings
Cheap to run

Easy to control/perturb

Can add in complexity to understand the 
full system.

Idealized test cases for dynamical core 
numerics and tracer transports without 
the complicating physics
Test cases for model physics with 
prescribed dynamics (single column cases 
over a location during an intensive 
observation period)

Useful for debugging during dynamical 
core and physics parameterization 
development.

Useful Teaching Tool



Over the last few years, in an effort motivated and lead by Lorenzo Polvani and Amy Clement 
a number of idealized configurations of CAM have been made available within CESM.

Some of these configurations were already there and used extensively by model developers 
(e.g., the dry dynamical core) and for these it was a case of cleaning them up, fully 
supporting them, making a compset and and documenting them.

Others required more work… 
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The Dry Dynamical Core

Dynamics

𝐷𝐷θ
𝐷𝐷𝐷𝐷
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Newtonian Relaxation of the temperature 
field toward a specified equilibrium profile 

𝜕𝜕𝑇𝑇
𝜕𝜕𝐷𝐷 = ⋯−

𝑇𝑇 − 𝑇𝑇𝑒𝑒𝑒𝑒
τ

Linear drag on wind at the lowest levels
𝜕𝜕�⃗�𝑣
𝜕𝜕𝐷𝐷 = ⋯− 𝑘𝑘𝑣𝑣�⃗�𝑣



http://www.cesm.ucar.edu/models/simpler-models/held-
suarez.html

Step-by-step instructions

Example plots and scripts for 
validation



http://www.cesm.ucar.edu/models/simpler-models/held-
suarez.html

Instructions on:

Running with a different dynamical core
Changing the vertical and horizontal resolution

Running with topography

Running with a different analytical relaxation temperature profile
(Polvani and Kushner 2002 stratosphere as an example)

Running with a relaxation temperature profile from netcdf
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Issues for use with idealized ocean models
No representation of surface stress (but that 
could be added)
No moisture (no precipitation or evaporation)

No radiation
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Moist Held Suarez (Thatcher and Jablonowski 2016)

Dynamics

𝐷𝐷θ
𝐷𝐷𝐷𝐷

= 𝑄𝑄

Newtonian Relaxation of the temperature 
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Prescribed SST

Idealized representation of  boundary 
layer fluxes of heat and moisture

Moisture that moves around with the 
dynamics.

Diabatic heating from condensation of 
saturated air parcels.
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Issues for use with idealized ocean models

No radiation
Boundary layer fluxes are more simplified than in 
CAM.
- Still Rayleigh drag for momentum
- Simple surface fluxes of temperature and 
moisture e.g., no dependence on boundary 
layer stability profiles.



The Atmospheric Model Hierarchy
CAM

Aquaplanet

Idealized Moist 
Physics

Dry Dynamical 
Core

Shallow Water

Barotropic Models

Stationary Wave 
Models

Full Dynamics

Single Column 
Atmospheric 
Model (SCAM)

Idealized 
Dynamics and 
Physics

Increasingly 
complex 
physics

Full Physics
Prescribed 
Dynamics

Moist Held-
Suarez

Gray radiation



The Atmospheric Model Hierarchy
CAM

Aquaplanet

Idealized Moist 
Physics

Dry Dynamical 
Core

Shallow Water

Barotropic Models

Stationary Wave 
Models

Full Dynamics

Single Column 
Atmospheric 
Model (SCAM)

Idealized 
Dynamics and 
Physics

Increasingly 
complex 
physics

Full Physics
Prescribed 
Dynamics

Moist Held-
Suarez

Gray radiation



Moist Held Suarez (Thatcher and Jablonowski 2016)
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Gray radiation (Frierson et al 2006)

Dynamics

𝐷𝐷θ
𝐷𝐷𝐷𝐷

= 𝑄𝑄

Gray radiation.
Specified long wave absorber distribution
Radiation does not see water vapor
No clouds  

Prescribed SST

Idealized representation of  boundary 
layer fluxes of momentum and moisture

Moisture that moves around with the 
dynamics.

Diabatic heating from condensation of 
saturated air parcels.

Simplified Monin-Obhukov for surface 
fluxes
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Considerations for idealized ocean models.

It has radiation
But much more simplified than CAM physics 
e.g., no clouds, no water vapor seen by the 
radiation scheme.
Representation of surface fluxes is simplified 
compared to CAM.
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The Community Atmosphere Model (CAM)

Dynamics
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Currently available with CAM4, CAM5 and 
CAM6 physics in FV and SE dynamical cores.
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Considerations for idealized ocean models:
Has everything the full GCM has.
CAM4 is a lot cheaper than CAM5 or 6

CAM4

CAM5: prognostic aerosols, differences in shallow 
convection scheme and radiation 

The main differences between the different physics 
packages

CAM6: CLUBB replaces  boundary layer turbulence, cloud 
macrophysics and shallow convection.  Orographic 
blocking.  More complicated microphysics 
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Considerations for idealized ocean models:
Has everything the full GCM has.
CAM4 is a lot cheaper than CAM5 or 6

CAM4

CAM5: prognostic aerosols, differences in shallow 
convection scheme and radiation 

The main differences between the different physics 
packages

CAM6: CLUBB replaces  boundary layer turbulence, cloud 
macrophysics and shallow convection.  Orographic 
blocking.  More complicated microphysics 

CAM4 2deg FV = ~50 core hours/year
CAM6 2deg FV = ~300 core hours/year



Some miscellaneous things about experience with atmospheric simple 
models:

Before embarking on the aquaplanet, Brian Medeiros sent out a questionnaire

0 10 20 30 40 50

AGCM
non-global

Ocn only
SOM (no ice)

SOM (ice)
AOGCM

Other

85 responses

The biggest bottleneck = software engineering resources.
A large component of the work is a software engineering exercise and software engineers 
are already over-committed.
Resources are needed for that. We have had some supplemental NSF funding to contribute.



Thanks
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